This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with S e. dom U .) Could be significantly shortened if poslubdg is in quantified form. mrelatlub could potentially be shortened using this. See mrelatlubALT . (Contributed by Zhi Wang, 28-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipolub.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| ipolub.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| ipolub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) | ||
| ipolub.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) | ||
| ipolubdm.t | ⊢ ( 𝜑 → 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) | ||
| ipolub.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐹 ) | ||
| Assertion | ipolub | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolub.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| 2 | ipolub.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 3 | ipolub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) | |
| 4 | ipolub.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) | |
| 5 | ipolubdm.t | ⊢ ( 𝜑 → 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) | |
| 6 | ipolub.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐹 ) | |
| 7 | eqid | ⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) | |
| 8 | 1 | ipobas | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 10 | 1 | ipopos | ⊢ 𝐼 ∈ Poset |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 𝐼 ∈ Poset ) |
| 12 | breq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ( le ‘ 𝐼 ) 𝑇 ↔ 𝑦 ( le ‘ 𝐼 ) 𝑇 ) ) | |
| 13 | intubeu | ⊢ ( 𝑇 ∈ 𝐹 → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ↔ 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) ) | |
| 14 | 13 | biimpar | ⊢ ( ( 𝑇 ∈ 𝐹 ∧ 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) → ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ) |
| 15 | 6 5 14 | syl2anc | ⊢ ( 𝜑 → ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ) |
| 16 | 1 2 3 7 | ipolublem | ⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) ) |
| 17 | 6 16 | mpdan | ⊢ ( 𝜑 → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) ) |
| 18 | 15 17 | mpbid | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) |
| 19 | 18 | simpld | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 22 | 12 20 21 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ( le ‘ 𝐼 ) 𝑇 ) |
| 23 | breq2 | ⊢ ( 𝑣 = 𝑧 → ( 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ 𝑤 ( le ‘ 𝐼 ) 𝑧 ) ) | |
| 24 | 23 | ralbidv | ⊢ ( 𝑣 = 𝑧 → ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑧 ) ) |
| 25 | breq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ( le ‘ 𝐼 ) 𝑧 ↔ 𝑦 ( le ‘ 𝐼 ) 𝑧 ) ) | |
| 26 | 25 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑧 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) |
| 27 | 24 26 | bitrdi | ⊢ ( 𝑣 = 𝑧 → ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) ) |
| 28 | breq2 | ⊢ ( 𝑣 = 𝑧 → ( 𝑇 ( le ‘ 𝐼 ) 𝑣 ↔ 𝑇 ( le ‘ 𝐼 ) 𝑧 ) ) | |
| 29 | 27 28 | imbi12d | ⊢ ( 𝑣 = 𝑧 → ( ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 → 𝑇 ( le ‘ 𝐼 ) 𝑧 ) ) ) |
| 30 | 18 | simprd | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ) → ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) |
| 32 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ) → 𝑧 ∈ 𝐹 ) | |
| 33 | 29 31 32 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 → 𝑇 ( le ‘ 𝐼 ) 𝑧 ) ) |
| 34 | 33 | 3impia | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) → 𝑇 ( le ‘ 𝐼 ) 𝑧 ) |
| 35 | 7 9 4 11 3 6 22 34 | poslubdg | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑇 ) |