This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness of the least upper bound. (Contributed by Zhi Wang, 28-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intubeu | ⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) ↔ 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint | ⊢ ( 𝐶 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } 𝐶 ⊆ 𝑦 ) | |
| 2 | sseq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦 ) ) | |
| 3 | 2 | ralrab | ⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } 𝐶 ⊆ 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) |
| 4 | 1 3 | bitri | ⊢ ( 𝐶 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) |
| 5 | 4 | biimpri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) → 𝐶 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) |
| 7 | sseq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝐴 ⊆ 𝑧 ↔ 𝐴 ⊆ 𝐶 ) ) | |
| 8 | simpll | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 ∈ 𝐵 ) | |
| 9 | simplr | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐴 ⊆ 𝐶 ) | |
| 10 | 7 8 9 | elrabd | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 ∈ { 𝑧 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑧 } ) |
| 11 | sseq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐴 ⊆ 𝑧 ↔ 𝐴 ⊆ 𝑥 ) ) | |
| 12 | 11 | cbvrabv | ⊢ { 𝑧 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑧 } = { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } |
| 13 | 10 12 | eleqtrdi | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) |
| 14 | intss1 | ⊢ ( 𝐶 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ⊆ 𝐶 ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ⊆ 𝐶 ) |
| 16 | 6 15 | eqssd | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) |
| 17 | 16 | expl | ⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) ) |
| 18 | ssintub | ⊢ 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } | |
| 19 | sseq2 | ⊢ ( 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → ( 𝐴 ⊆ 𝐶 ↔ 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) ) | |
| 20 | 18 19 | mpbiri | ⊢ ( 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → 𝐴 ⊆ 𝐶 ) |
| 21 | eqimss | ⊢ ( 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → 𝐶 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) | |
| 22 | 21 4 | sylib | ⊢ ( 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) |
| 23 | 20 22 | jca | ⊢ ( 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → ( 𝐴 ⊆ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) ) |
| 24 | 17 23 | impbid1 | ⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) ↔ 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) ) |