This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ip1i . (Contributed by NM, 21-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ip1i.a | ⊢ 𝐴 ∈ 𝑋 | ||
| ip1i.b | ⊢ 𝐵 ∈ 𝑋 | ||
| ip1i.c | ⊢ 𝐶 ∈ 𝑋 | ||
| ip1i.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| ip0i.j | ⊢ 𝐽 ∈ ℂ | ||
| Assertion | ip1ilem | ⊢ ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) = ( 2 · ( 𝐴 𝑃 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ip1i.a | ⊢ 𝐴 ∈ 𝑋 | |
| 7 | ip1i.b | ⊢ 𝐵 ∈ 𝑋 | |
| 8 | ip1i.c | ⊢ 𝐶 ∈ 𝑋 | |
| 9 | ip1i.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 10 | ip0i.j | ⊢ 𝐽 ∈ ℂ | |
| 11 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 12 | 1 2 3 9 4 | 4ipval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 4 · ( 𝐴 𝑃 𝐶 ) ) = ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) |
| 13 | 11 6 8 12 | mp3an | ⊢ ( 4 · ( 𝐴 𝑃 𝐶 ) ) = ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) |
| 14 | 13 | oveq2i | ⊢ ( 2 · ( 4 · ( 𝐴 𝑃 𝐶 ) ) ) = ( 2 · ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) |
| 15 | 2cn | ⊢ 2 ∈ ℂ | |
| 16 | 4cn | ⊢ 4 ∈ ℂ | |
| 17 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐶 ) ∈ ℂ ) |
| 18 | 11 6 8 17 | mp3an | ⊢ ( 𝐴 𝑃 𝐶 ) ∈ ℂ |
| 19 | 15 16 18 | mul12i | ⊢ ( 2 · ( 4 · ( 𝐴 𝑃 𝐶 ) ) ) = ( 4 · ( 2 · ( 𝐴 𝑃 𝐶 ) ) ) |
| 20 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ) |
| 21 | 11 6 8 20 | mp3an | ⊢ ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 |
| 22 | 1 9 11 21 | nvcli | ⊢ ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ∈ ℝ |
| 23 | 22 | resqcli | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) ∈ ℝ |
| 24 | 23 | recni | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) ∈ ℂ |
| 25 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 26 | 25 | negcli | ⊢ - 1 ∈ ℂ |
| 27 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( - 1 𝑆 𝐶 ) ∈ 𝑋 ) |
| 28 | 11 26 8 27 | mp3an | ⊢ ( - 1 𝑆 𝐶 ) ∈ 𝑋 |
| 29 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐶 ) ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 30 | 11 6 28 29 | mp3an | ⊢ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ∈ 𝑋 |
| 31 | 1 9 11 30 | nvcli | ⊢ ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ∈ ℝ |
| 32 | 31 | resqcli | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 33 | 32 | recni | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 34 | 24 33 | subcli | ⊢ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ |
| 35 | ax-icn | ⊢ i ∈ ℂ | |
| 36 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( i 𝑆 𝐶 ) ∈ 𝑋 ) |
| 37 | 11 35 8 36 | mp3an | ⊢ ( i 𝑆 𝐶 ) ∈ 𝑋 |
| 38 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( i 𝑆 𝐶 ) ∈ 𝑋 ) → ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 39 | 11 6 37 38 | mp3an | ⊢ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ∈ 𝑋 |
| 40 | 1 9 11 39 | nvcli | ⊢ ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ∈ ℝ |
| 41 | 40 | resqcli | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 42 | 41 | recni | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 43 | 35 | negcli | ⊢ - i ∈ ℂ |
| 44 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - i ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( - i 𝑆 𝐶 ) ∈ 𝑋 ) |
| 45 | 11 43 8 44 | mp3an | ⊢ ( - i 𝑆 𝐶 ) ∈ 𝑋 |
| 46 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - i 𝑆 𝐶 ) ∈ 𝑋 ) → ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 47 | 11 6 45 46 | mp3an | ⊢ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ∈ 𝑋 |
| 48 | 1 9 11 47 | nvcli | ⊢ ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ∈ ℝ |
| 49 | 48 | resqcli | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 50 | 49 | recni | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 51 | 42 50 | subcli | ⊢ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ |
| 52 | 35 51 | mulcli | ⊢ ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ∈ ℂ |
| 53 | 15 34 52 | adddii | ⊢ ( 2 · ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) = ( ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) + ( 2 · ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) |
| 54 | 1 2 3 4 5 6 7 8 9 25 | ip0i | ⊢ ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) |
| 55 | 1 3 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ) → ( 1 𝑆 𝐶 ) = 𝐶 ) |
| 56 | 11 8 55 | mp2an | ⊢ ( 1 𝑆 𝐶 ) = 𝐶 |
| 57 | 56 | oveq2i | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 1 𝑆 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) |
| 58 | 57 | fveq2i | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 1 𝑆 𝐶 ) ) ) = ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) |
| 59 | 58 | oveq1i | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) |
| 60 | 59 | oveq1i | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) |
| 61 | 56 | oveq2i | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 1 𝑆 𝐶 ) ) = ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) |
| 62 | 61 | fveq2i | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 1 𝑆 𝐶 ) ) ) = ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) |
| 63 | 62 | oveq1i | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) |
| 64 | 63 | oveq1i | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) |
| 65 | 60 64 | oveq12i | ⊢ ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) |
| 66 | 56 | oveq2i | ⊢ ( 𝐴 𝐺 ( 1 𝑆 𝐶 ) ) = ( 𝐴 𝐺 𝐶 ) |
| 67 | 66 | fveq2i | ⊢ ( 𝑁 ‘ ( 𝐴 𝐺 ( 1 𝑆 𝐶 ) ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) |
| 68 | 67 | oveq1i | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) |
| 69 | 68 | oveq1i | ⊢ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) |
| 70 | 69 | oveq2i | ⊢ ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 1 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) |
| 71 | 54 65 70 | 3eqtr3i | ⊢ ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) |
| 72 | 1 2 3 4 5 6 7 8 9 35 | ip0i | ⊢ ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) |
| 73 | 72 | oveq2i | ⊢ ( i · ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) = ( i · ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) |
| 74 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 75 | 11 6 7 74 | mp3an | ⊢ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 |
| 76 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( i 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 77 | 11 75 37 76 | mp3an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ∈ 𝑋 |
| 78 | 1 9 11 77 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ∈ ℝ |
| 79 | 78 | resqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 80 | 79 | recni | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 81 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( - i 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 82 | 11 75 45 81 | mp3an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ∈ 𝑋 |
| 83 | 1 9 11 82 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ∈ ℝ |
| 84 | 83 | resqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 85 | 84 | recni | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 86 | 80 85 | subcli | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ |
| 87 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 88 | 11 26 7 87 | mp3an | ⊢ ( - 1 𝑆 𝐵 ) ∈ 𝑋 |
| 89 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ) |
| 90 | 11 6 88 89 | mp3an | ⊢ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 |
| 91 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ∧ ( i 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 92 | 11 90 37 91 | mp3an | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ∈ 𝑋 |
| 93 | 1 9 11 92 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ∈ ℝ |
| 94 | 93 | resqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 95 | 94 | recni | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 96 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ∧ ( - i 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 97 | 11 90 45 96 | mp3an | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ∈ 𝑋 |
| 98 | 1 9 11 97 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ∈ ℝ |
| 99 | 98 | resqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 100 | 99 | recni | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 101 | 95 100 | subcli | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ |
| 102 | 35 86 101 | adddii | ⊢ ( i · ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) = ( ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) |
| 103 | 35 15 51 | mul12i | ⊢ ( i · ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) = ( 2 · ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) |
| 104 | 73 102 103 | 3eqtr3i | ⊢ ( ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) = ( 2 · ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) |
| 105 | 71 104 | oveq12i | ⊢ ( ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) + ( ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) = ( ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) + ( 2 · ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) |
| 106 | 53 105 | eqtr4i | ⊢ ( 2 · ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) = ( ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) + ( ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) |
| 107 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ∈ 𝑋 ) |
| 108 | 11 75 8 107 | mp3an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ∈ 𝑋 |
| 109 | 1 9 11 108 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ∈ ℝ |
| 110 | 109 | resqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) ∈ ℝ |
| 111 | 110 | recni | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) ∈ ℂ |
| 112 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( - 1 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 113 | 11 75 28 112 | mp3an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ∈ 𝑋 |
| 114 | 1 9 11 113 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ∈ ℝ |
| 115 | 114 | resqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 116 | 115 | recni | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 117 | 111 116 | subcli | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ |
| 118 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ∈ 𝑋 ) |
| 119 | 11 90 8 118 | mp3an | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ∈ 𝑋 |
| 120 | 1 9 11 119 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ∈ ℝ |
| 121 | 120 | resqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) ∈ ℝ |
| 122 | 121 | recni | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) ∈ ℂ |
| 123 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ∧ ( - 1 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 124 | 11 90 28 123 | mp3an | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ∈ 𝑋 |
| 125 | 1 9 11 124 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ∈ ℝ |
| 126 | 125 | resqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 127 | 126 | recni | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 128 | 122 127 | subcli | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ |
| 129 | 35 86 | mulcli | ⊢ ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ∈ ℂ |
| 130 | 35 101 | mulcli | ⊢ ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ∈ ℂ |
| 131 | 117 128 129 130 | add4i | ⊢ ( ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) + ( ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) = ( ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) + ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) |
| 132 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) ∈ ℂ ) |
| 133 | 11 75 8 132 | mp3an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) ∈ ℂ |
| 134 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ∈ ℂ ) |
| 135 | 11 90 8 134 | mp3an | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ∈ ℂ |
| 136 | 16 133 135 | adddii | ⊢ ( 4 · ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) ) = ( ( 4 · ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) ) + ( 4 · ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) ) |
| 137 | 1 2 3 9 4 | 4ipval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 4 · ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) ) = ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) |
| 138 | 11 75 8 137 | mp3an | ⊢ ( 4 · ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) ) = ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) |
| 139 | 1 2 3 9 4 | 4ipval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 4 · ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) = ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) |
| 140 | 11 90 8 139 | mp3an | ⊢ ( 4 · ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) = ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) |
| 141 | 138 140 | oveq12i | ⊢ ( ( 4 · ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) ) + ( 4 · ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) ) = ( ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) + ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) |
| 142 | 136 141 | eqtr2i | ⊢ ( ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) + ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) = ( 4 · ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) ) |
| 143 | 106 131 142 | 3eqtri | ⊢ ( 2 · ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐶 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - i 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) ) = ( 4 · ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) ) |
| 144 | 14 19 143 | 3eqtr3ri | ⊢ ( 4 · ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) ) = ( 4 · ( 2 · ( 𝐴 𝑃 𝐶 ) ) ) |
| 145 | 144 | oveq1i | ⊢ ( ( 4 · ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) ) / 4 ) = ( ( 4 · ( 2 · ( 𝐴 𝑃 𝐶 ) ) ) / 4 ) |
| 146 | 133 135 | addcli | ⊢ ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) ∈ ℂ |
| 147 | 4ne0 | ⊢ 4 ≠ 0 | |
| 148 | 146 16 147 | divcan3i | ⊢ ( ( 4 · ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) ) / 4 ) = ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) |
| 149 | 15 18 | mulcli | ⊢ ( 2 · ( 𝐴 𝑃 𝐶 ) ) ∈ ℂ |
| 150 | 149 16 147 | divcan3i | ⊢ ( ( 4 · ( 2 · ( 𝐴 𝑃 𝐶 ) ) ) / 4 ) = ( 2 · ( 𝐴 𝑃 𝐶 ) ) |
| 151 | 145 148 150 | 3eqtr3i | ⊢ ( ( ( 𝐴 𝐺 𝐵 ) 𝑃 𝐶 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝑃 𝐶 ) ) = ( 2 · ( 𝐴 𝑃 𝐶 ) ) |