This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A slight variant of Equation 6.46 of Ponnusamy p. 362, where J is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ip1i.a | ⊢ 𝐴 ∈ 𝑋 | ||
| ip1i.b | ⊢ 𝐵 ∈ 𝑋 | ||
| ip1i.c | ⊢ 𝐶 ∈ 𝑋 | ||
| ip1i.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| ip0i.j | ⊢ 𝐽 ∈ ℂ | ||
| Assertion | ip0i | ⊢ ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ip1i.a | ⊢ 𝐴 ∈ 𝑋 | |
| 7 | ip1i.b | ⊢ 𝐵 ∈ 𝑋 | |
| 8 | ip1i.c | ⊢ 𝐶 ∈ 𝑋 | |
| 9 | ip1i.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 10 | ip0i.j | ⊢ 𝐽 ∈ ℂ | |
| 11 | 2cn | ⊢ 2 ∈ ℂ | |
| 12 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 13 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐽 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) |
| 14 | 12 10 8 13 | mp3an | ⊢ ( 𝐽 𝑆 𝐶 ) ∈ 𝑋 |
| 15 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 16 | 12 6 14 15 | mp3an | ⊢ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 |
| 17 | 1 9 12 16 | nvcli | ⊢ ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ∈ ℝ |
| 18 | 17 | recni | ⊢ ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ∈ ℂ |
| 19 | 18 | sqcli | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 20 | 10 | negcli | ⊢ - 𝐽 ∈ ℂ |
| 21 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 𝐽 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( - 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) |
| 22 | 12 20 8 21 | mp3an | ⊢ ( - 𝐽 𝑆 𝐶 ) ∈ 𝑋 |
| 23 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 24 | 12 6 22 23 | mp3an | ⊢ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 |
| 25 | 1 9 12 24 | nvcli | ⊢ ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ∈ ℝ |
| 26 | 25 | recni | ⊢ ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ∈ ℂ |
| 27 | 26 | sqcli | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 28 | 11 19 27 | subdii | ⊢ ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) − ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) |
| 29 | 11 19 | mulcli | ⊢ ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ |
| 30 | 11 27 | mulcli | ⊢ ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ |
| 31 | 1 9 12 7 | nvcli | ⊢ ( 𝑁 ‘ 𝐵 ) ∈ ℝ |
| 32 | 31 | recni | ⊢ ( 𝑁 ‘ 𝐵 ) ∈ ℂ |
| 33 | 32 | sqcli | ⊢ ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ∈ ℂ |
| 34 | 11 33 | mulcli | ⊢ ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ∈ ℂ |
| 35 | pnpcan2 | ⊢ ( ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ ∧ ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ ∧ ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ∈ ℂ ) → ( ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) − ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) = ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) − ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) ) | |
| 36 | 29 30 34 35 | mp3an | ⊢ ( ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) − ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) = ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) − ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) |
| 37 | 28 36 | eqtr4i | ⊢ ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) − ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 38 | eqid | ⊢ ( 1st ‘ 𝑈 ) = ( 1st ‘ 𝑈 ) | |
| 39 | 38 | nvvc | ⊢ ( 𝑈 ∈ NrmCVec → ( 1st ‘ 𝑈 ) ∈ CVecOLD ) |
| 40 | 2 | vafval | ⊢ 𝐺 = ( 1st ‘ ( 1st ‘ 𝑈 ) ) |
| 41 | 40 | vcablo | ⊢ ( ( 1st ‘ 𝑈 ) ∈ CVecOLD → 𝐺 ∈ AbelOp ) |
| 42 | 12 39 41 | mp2b | ⊢ 𝐺 ∈ AbelOp |
| 43 | 6 7 14 | 3pm3.2i | ⊢ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) |
| 44 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 |
| 45 | 44 | ablo32 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) = ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) |
| 46 | 42 43 45 | mp2an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) = ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) |
| 47 | 46 | fveq2i | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) = ( 𝑁 ‘ ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) |
| 48 | 47 | oveq1i | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) ↑ 2 ) |
| 49 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 50 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 51 | 12 49 7 50 | mp3an | ⊢ ( - 1 𝑆 𝐵 ) ∈ 𝑋 |
| 52 | 6 51 14 | 3pm3.2i | ⊢ ( 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ∧ ( 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) |
| 53 | 44 | ablo32 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ∧ ( 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) = ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 54 | 42 52 53 | mp2an | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) = ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) |
| 55 | 54 | fveq2i | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) = ( 𝑁 ‘ ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 56 | 55 | oveq1i | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) |
| 57 | 48 56 | oveq12i | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) |
| 58 | 1 2 3 9 | phpar | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 59 | 5 16 7 58 | mp3an | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 60 | 11 19 33 | adddii | ⊢ ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) = ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 61 | 57 59 60 | 3eqtri | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) = ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 62 | 6 7 22 | 3pm3.2i | ⊢ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( - 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) |
| 63 | 44 | ablo32 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( - 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) = ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) |
| 64 | 42 62 63 | mp2an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) = ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) |
| 65 | 64 | fveq2i | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) = ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) |
| 66 | 65 | oveq1i | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) ↑ 2 ) |
| 67 | 6 51 22 | 3pm3.2i | ⊢ ( 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ∧ ( - 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) |
| 68 | 44 | ablo32 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ∧ ( - 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) = ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 69 | 42 67 68 | mp2an | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) = ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) |
| 70 | 69 | fveq2i | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) = ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 71 | 70 | oveq1i | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) |
| 72 | 66 71 | oveq12i | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) |
| 73 | 1 2 3 9 | phpar | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 74 | 5 24 7 73 | mp3an | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 75 | 11 27 33 | adddii | ⊢ ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) = ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 76 | 72 74 75 | 3eqtri | ⊢ ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) = ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 77 | 61 76 | oveq12i | ⊢ ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) − ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) − ( ( 2 · ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 78 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 79 | 12 6 7 78 | mp3an | ⊢ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 |
| 80 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 81 | 12 79 14 80 | mp3an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 |
| 82 | 1 9 12 81 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ∈ ℝ |
| 83 | 82 | recni | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ∈ ℂ |
| 84 | 83 | sqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 85 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ) |
| 86 | 12 6 51 85 | mp3an | ⊢ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 |
| 87 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ∧ ( 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 88 | 12 86 14 87 | mp3an | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 |
| 89 | 1 9 12 88 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ∈ ℝ |
| 90 | 89 | recni | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ∈ ℂ |
| 91 | 90 | sqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 92 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( - 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 93 | 12 79 22 92 | mp3an | ⊢ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 |
| 94 | 1 9 12 93 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ∈ ℝ |
| 95 | 94 | recni | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ∈ ℂ |
| 96 | 95 | sqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 97 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ∈ 𝑋 ∧ ( - 𝐽 𝑆 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 ) |
| 98 | 12 86 22 97 | mp3an | ⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ∈ 𝑋 |
| 99 | 1 9 12 98 | nvcli | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ∈ ℝ |
| 100 | 99 | recni | ⊢ ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ∈ ℂ |
| 101 | 100 | sqcli | ⊢ ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 102 | 84 91 96 101 | addsub4i | ⊢ ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) − ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) |
| 103 | 37 77 102 | 3eqtr2ri | ⊢ ( ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) + ( ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 𝐽 𝑆 𝐶 ) ) ) ↑ 2 ) ) ) |