This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvf.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| nvcli.9 | ⊢ 𝑈 ∈ NrmCVec | ||
| nvcli.7 | ⊢ 𝐴 ∈ 𝑋 | ||
| Assertion | nvcli | ⊢ ( 𝑁 ‘ 𝐴 ) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvf.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 3 | nvcli.9 | ⊢ 𝑈 ∈ NrmCVec | |
| 4 | nvcli.7 | ⊢ 𝐴 ∈ 𝑋 | |
| 5 | 1 2 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 6 | 3 4 5 | mp2an | ⊢ ( 𝑁 ‘ 𝐴 ) ∈ ℝ |