This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ablcom.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | ablo32 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | 1 | ablocom | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐺 𝐶 ) = ( 𝐶 𝐺 𝐵 ) ) |
| 3 | 2 | 3adant3r1 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐺 𝐶 ) = ( 𝐶 𝐺 𝐵 ) ) |
| 4 | 3 | oveq2d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
| 5 | ablogrpo | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) | |
| 6 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) |
| 8 | 3ancomb | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) | |
| 9 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
| 10 | 8 9 | sylan2b | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
| 11 | 5 10 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
| 12 | 4 7 11 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) ) |