This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phpar.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| phpar.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| phpar.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| phpar.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | phpar | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phpar.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | phpar.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | phpar.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | phpar.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 5 | 2 | fvexi | ⊢ 𝐺 ∈ V |
| 6 | 3 | fvexi | ⊢ 𝑆 ∈ V |
| 7 | 4 | fvexi | ⊢ 𝑁 ∈ V |
| 8 | 5 6 7 | 3pm3.2i | ⊢ ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) |
| 9 | 2 3 4 | phop | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑈 ∈ CPreHilOLD → ( 𝑈 ∈ CPreHilOLD ↔ 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ) ) |
| 11 | 10 | ibi | ⊢ ( 𝑈 ∈ CPreHilOLD → 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ) |
| 12 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 |
| 13 | 12 | isphg | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ↔ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 14 | 13 | simplbda | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ∧ 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 15 | 8 11 14 | sylancr | ⊢ ( 𝑈 ∈ CPreHilOLD → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 17 | fvoveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ) | |
| 18 | 17 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) ) |
| 19 | fvoveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) | |
| 20 | 19 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) |
| 21 | 18 20 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝐴 ) ) | |
| 23 | 22 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 24 | 23 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 25 | 24 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 26 | 21 25 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 27 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 𝐵 ) ) | |
| 28 | 27 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ) |
| 29 | 28 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ) |
| 30 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( - 1 𝑆 𝑦 ) = ( - 1 𝑆 𝐵 ) ) | |
| 31 | 30 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) = ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 32 | 31 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) |
| 33 | 32 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) |
| 34 | 29 33 | oveq12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ 𝐵 ) ) | |
| 36 | 35 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 37 | 36 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 38 | 37 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 39 | 34 38 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 40 | 26 39 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 41 | 40 | 3adant1 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 42 | 16 41 | mpd | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |