This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioo5 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 3 | 3anass | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) | |
| 4 | 3 | baibr | ⊢ ( 𝐶 ∈ ℝ* → ( ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 6 | 2 5 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |