This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| isoval.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| invinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| invco.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| invco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| invco.f | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐼 𝑍 ) ) | ||
| Assertion | invco | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 𝑁 𝑍 ) ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | isoval.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 7 | invinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 8 | invco.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 9 | invco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 10 | invco.f | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐼 𝑍 ) ) | |
| 11 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 12 | 1 2 3 4 5 6 | isoval | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |
| 13 | 7 12 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑋 𝑁 𝑌 ) ) |
| 14 | 1 2 3 4 5 | invfun | ⊢ ( 𝜑 → Fun ( 𝑋 𝑁 𝑌 ) ) |
| 15 | funfvbrb | ⊢ ( Fun ( 𝑋 𝑁 𝑌 ) → ( 𝐹 ∈ dom ( 𝑋 𝑁 𝑌 ) ↔ 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 𝑁 𝑌 ) ↔ 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) ) |
| 17 | 13 16 | mpbid | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |
| 18 | 1 2 3 4 5 11 | isinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ∧ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
| 19 | 17 18 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ∧ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
| 20 | 19 | simpld | ⊢ ( 𝜑 → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |
| 21 | 1 2 3 5 9 6 | isoval | ⊢ ( 𝜑 → ( 𝑌 𝐼 𝑍 ) = dom ( 𝑌 𝑁 𝑍 ) ) |
| 22 | 10 21 | eleqtrd | ⊢ ( 𝜑 → 𝐺 ∈ dom ( 𝑌 𝑁 𝑍 ) ) |
| 23 | 1 2 3 5 9 | invfun | ⊢ ( 𝜑 → Fun ( 𝑌 𝑁 𝑍 ) ) |
| 24 | funfvbrb | ⊢ ( Fun ( 𝑌 𝑁 𝑍 ) → ( 𝐺 ∈ dom ( 𝑌 𝑁 𝑍 ) ↔ 𝐺 ( 𝑌 𝑁 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → ( 𝐺 ∈ dom ( 𝑌 𝑁 𝑍 ) ↔ 𝐺 ( 𝑌 𝑁 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ) |
| 26 | 22 25 | mpbid | ⊢ ( 𝜑 → 𝐺 ( 𝑌 𝑁 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) |
| 27 | 1 2 3 5 9 11 | isinv | ⊢ ( 𝜑 → ( 𝐺 ( 𝑌 𝑁 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ↔ ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ∧ ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ( 𝑍 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ) ) ) |
| 28 | 26 27 | mpbid | ⊢ ( 𝜑 → ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ∧ ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ( 𝑍 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ) ) |
| 29 | 28 | simpld | ⊢ ( 𝜑 → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) |
| 30 | 1 8 11 3 4 5 9 20 29 | sectco | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ) |
| 31 | 28 | simprd | ⊢ ( 𝜑 → ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ( 𝑍 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ) |
| 32 | 19 | simprd | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) |
| 33 | 1 8 11 3 9 5 4 31 32 | sectco | ⊢ ( 𝜑 → ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ( 𝑍 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 34 | 1 2 3 4 9 11 | isinv | ⊢ ( 𝜑 → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 𝑁 𝑍 ) ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ↔ ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ∧ ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ( 𝑍 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 35 | 30 33 34 | mpbir2and | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 𝑁 𝑍 ) ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 𝑁 𝑍 ) ‘ 𝐺 ) ) ) |