This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an isomorphism F (which is unique because of invf and is therefore denoted by ( ( X N Y )F ) , see also remark 3.12 in Adamek p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invisoinv.b | |- B = ( Base ` C ) |
|
| invisoinv.i | |- I = ( Iso ` C ) |
||
| invisoinv.n | |- N = ( Inv ` C ) |
||
| invisoinv.c | |- ( ph -> C e. Cat ) |
||
| invisoinv.x | |- ( ph -> X e. B ) |
||
| invisoinv.y | |- ( ph -> Y e. B ) |
||
| invisoinv.f | |- ( ph -> F e. ( X I Y ) ) |
||
| Assertion | invisoinvl | |- ( ph -> ( ( X N Y ) ` F ) ( Y N X ) F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | |- B = ( Base ` C ) |
|
| 2 | invisoinv.i | |- I = ( Iso ` C ) |
|
| 3 | invisoinv.n | |- N = ( Inv ` C ) |
|
| 4 | invisoinv.c | |- ( ph -> C e. Cat ) |
|
| 5 | invisoinv.x | |- ( ph -> X e. B ) |
|
| 6 | invisoinv.y | |- ( ph -> Y e. B ) |
|
| 7 | invisoinv.f | |- ( ph -> F e. ( X I Y ) ) |
|
| 8 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 9 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 10 | 1 9 4 6 | idiso | |- ( ph -> ( ( Id ` C ) ` Y ) e. ( Y ( Iso ` C ) Y ) ) |
| 11 | 2 | a1i | |- ( ph -> I = ( Iso ` C ) ) |
| 12 | 11 | oveqd | |- ( ph -> ( Y I Y ) = ( Y ( Iso ` C ) Y ) ) |
| 13 | 10 12 | eleqtrrd | |- ( ph -> ( ( Id ` C ) ` Y ) e. ( Y I Y ) ) |
| 14 | 1 3 4 5 6 2 7 8 6 13 | invco | |- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) ( X N Y ) ( ( ( X N Y ) ` F ) ( <. Y , Y >. ( comp ` C ) X ) ( ( Y N Y ) ` ( ( Id ` C ) ` Y ) ) ) ) |
| 15 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 16 | 1 15 2 4 5 6 | isohom | |- ( ph -> ( X I Y ) C_ ( X ( Hom ` C ) Y ) ) |
| 17 | 16 7 | sseldd | |- ( ph -> F e. ( X ( Hom ` C ) Y ) ) |
| 18 | 1 15 9 4 5 8 6 17 | catlid | |- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) = F ) |
| 19 | 3 | a1i | |- ( ph -> N = ( Inv ` C ) ) |
| 20 | 19 | oveqd | |- ( ph -> ( Y N Y ) = ( Y ( Inv ` C ) Y ) ) |
| 21 | 20 | fveq1d | |- ( ph -> ( ( Y N Y ) ` ( ( Id ` C ) ` Y ) ) = ( ( Y ( Inv ` C ) Y ) ` ( ( Id ` C ) ` Y ) ) ) |
| 22 | 1 9 4 6 | idinv | |- ( ph -> ( ( Y ( Inv ` C ) Y ) ` ( ( Id ` C ) ` Y ) ) = ( ( Id ` C ) ` Y ) ) |
| 23 | 21 22 | eqtrd | |- ( ph -> ( ( Y N Y ) ` ( ( Id ` C ) ` Y ) ) = ( ( Id ` C ) ` Y ) ) |
| 24 | 23 | oveq2d | |- ( ph -> ( ( ( X N Y ) ` F ) ( <. Y , Y >. ( comp ` C ) X ) ( ( Y N Y ) ` ( ( Id ` C ) ` Y ) ) ) = ( ( ( X N Y ) ` F ) ( <. Y , Y >. ( comp ` C ) X ) ( ( Id ` C ) ` Y ) ) ) |
| 25 | 1 15 2 4 6 5 | isohom | |- ( ph -> ( Y I X ) C_ ( Y ( Hom ` C ) X ) ) |
| 26 | 1 3 4 5 6 2 | invf | |- ( ph -> ( X N Y ) : ( X I Y ) --> ( Y I X ) ) |
| 27 | 26 7 | ffvelcdmd | |- ( ph -> ( ( X N Y ) ` F ) e. ( Y I X ) ) |
| 28 | 25 27 | sseldd | |- ( ph -> ( ( X N Y ) ` F ) e. ( Y ( Hom ` C ) X ) ) |
| 29 | 1 15 9 4 6 8 5 28 | catrid | |- ( ph -> ( ( ( X N Y ) ` F ) ( <. Y , Y >. ( comp ` C ) X ) ( ( Id ` C ) ` Y ) ) = ( ( X N Y ) ` F ) ) |
| 30 | 24 29 | eqtrd | |- ( ph -> ( ( ( X N Y ) ` F ) ( <. Y , Y >. ( comp ` C ) X ) ( ( Y N Y ) ` ( ( Id ` C ) ` Y ) ) ) = ( ( X N Y ) ` F ) ) |
| 31 | 14 18 30 | 3brtr3d | |- ( ph -> F ( X N Y ) ( ( X N Y ) ` F ) ) |
| 32 | 1 3 4 6 5 | invsym | |- ( ph -> ( ( ( X N Y ) ` F ) ( Y N X ) F <-> F ( X N Y ) ( ( X N Y ) ` F ) ) ) |
| 33 | 31 32 | mpbird | |- ( ph -> ( ( X N Y ) ` F ) ( Y N X ) F ) |