This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invss.x | |- ( ph -> X e. B ) |
||
| invss.y | |- ( ph -> Y e. B ) |
||
| isoval.n | |- I = ( Iso ` C ) |
||
| invinv.f | |- ( ph -> F e. ( X I Y ) ) |
||
| invco.o | |- .x. = ( comp ` C ) |
||
| invco.z | |- ( ph -> Z e. B ) |
||
| invco.f | |- ( ph -> G e. ( Y I Z ) ) |
||
| Assertion | invco | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) ( X N Z ) ( ( ( X N Y ) ` F ) ( <. Z , Y >. .x. X ) ( ( Y N Z ) ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invss.x | |- ( ph -> X e. B ) |
|
| 5 | invss.y | |- ( ph -> Y e. B ) |
|
| 6 | isoval.n | |- I = ( Iso ` C ) |
|
| 7 | invinv.f | |- ( ph -> F e. ( X I Y ) ) |
|
| 8 | invco.o | |- .x. = ( comp ` C ) |
|
| 9 | invco.z | |- ( ph -> Z e. B ) |
|
| 10 | invco.f | |- ( ph -> G e. ( Y I Z ) ) |
|
| 11 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 12 | 1 2 3 4 5 6 | isoval | |- ( ph -> ( X I Y ) = dom ( X N Y ) ) |
| 13 | 7 12 | eleqtrd | |- ( ph -> F e. dom ( X N Y ) ) |
| 14 | 1 2 3 4 5 | invfun | |- ( ph -> Fun ( X N Y ) ) |
| 15 | funfvbrb | |- ( Fun ( X N Y ) -> ( F e. dom ( X N Y ) <-> F ( X N Y ) ( ( X N Y ) ` F ) ) ) |
|
| 16 | 14 15 | syl | |- ( ph -> ( F e. dom ( X N Y ) <-> F ( X N Y ) ( ( X N Y ) ` F ) ) ) |
| 17 | 13 16 | mpbid | |- ( ph -> F ( X N Y ) ( ( X N Y ) ` F ) ) |
| 18 | 1 2 3 4 5 11 | isinv | |- ( ph -> ( F ( X N Y ) ( ( X N Y ) ` F ) <-> ( F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) /\ ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F ) ) ) |
| 19 | 17 18 | mpbid | |- ( ph -> ( F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) /\ ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F ) ) |
| 20 | 19 | simpld | |- ( ph -> F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) ) |
| 21 | 1 2 3 5 9 6 | isoval | |- ( ph -> ( Y I Z ) = dom ( Y N Z ) ) |
| 22 | 10 21 | eleqtrd | |- ( ph -> G e. dom ( Y N Z ) ) |
| 23 | 1 2 3 5 9 | invfun | |- ( ph -> Fun ( Y N Z ) ) |
| 24 | funfvbrb | |- ( Fun ( Y N Z ) -> ( G e. dom ( Y N Z ) <-> G ( Y N Z ) ( ( Y N Z ) ` G ) ) ) |
|
| 25 | 23 24 | syl | |- ( ph -> ( G e. dom ( Y N Z ) <-> G ( Y N Z ) ( ( Y N Z ) ` G ) ) ) |
| 26 | 22 25 | mpbid | |- ( ph -> G ( Y N Z ) ( ( Y N Z ) ` G ) ) |
| 27 | 1 2 3 5 9 11 | isinv | |- ( ph -> ( G ( Y N Z ) ( ( Y N Z ) ` G ) <-> ( G ( Y ( Sect ` C ) Z ) ( ( Y N Z ) ` G ) /\ ( ( Y N Z ) ` G ) ( Z ( Sect ` C ) Y ) G ) ) ) |
| 28 | 26 27 | mpbid | |- ( ph -> ( G ( Y ( Sect ` C ) Z ) ( ( Y N Z ) ` G ) /\ ( ( Y N Z ) ` G ) ( Z ( Sect ` C ) Y ) G ) ) |
| 29 | 28 | simpld | |- ( ph -> G ( Y ( Sect ` C ) Z ) ( ( Y N Z ) ` G ) ) |
| 30 | 1 8 11 3 4 5 9 20 29 | sectco | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) ( X ( Sect ` C ) Z ) ( ( ( X N Y ) ` F ) ( <. Z , Y >. .x. X ) ( ( Y N Z ) ` G ) ) ) |
| 31 | 28 | simprd | |- ( ph -> ( ( Y N Z ) ` G ) ( Z ( Sect ` C ) Y ) G ) |
| 32 | 19 | simprd | |- ( ph -> ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F ) |
| 33 | 1 8 11 3 9 5 4 31 32 | sectco | |- ( ph -> ( ( ( X N Y ) ` F ) ( <. Z , Y >. .x. X ) ( ( Y N Z ) ` G ) ) ( Z ( Sect ` C ) X ) ( G ( <. X , Y >. .x. Z ) F ) ) |
| 34 | 1 2 3 4 9 11 | isinv | |- ( ph -> ( ( G ( <. X , Y >. .x. Z ) F ) ( X N Z ) ( ( ( X N Y ) ` F ) ( <. Z , Y >. .x. X ) ( ( Y N Z ) ` G ) ) <-> ( ( G ( <. X , Y >. .x. Z ) F ) ( X ( Sect ` C ) Z ) ( ( ( X N Y ) ` F ) ( <. Z , Y >. .x. X ) ( ( Y N Z ) ` G ) ) /\ ( ( ( X N Y ) ` F ) ( <. Z , Y >. .x. X ) ( ( Y N Z ) ` G ) ) ( Z ( Sect ` C ) X ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 35 | 30 33 34 | mpbir2and | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) ( X N Z ) ( ( ( X N Y ) ` F ) ( <. Z , Y >. .x. X ) ( ( Y N Z ) ` G ) ) ) |