This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intrnfi | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ ran 𝐹 ∈ ( fi ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | 1 | frnd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ran 𝐹 ⊆ 𝐵 ) |
| 3 | 1 | fdmd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → dom 𝐹 = 𝐴 ) |
| 4 | simpr2 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴 ≠ ∅ ) | |
| 5 | 3 4 | eqnetrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → dom 𝐹 ≠ ∅ ) |
| 6 | dm0rn0 | ⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) | |
| 7 | 6 | necon3bii | ⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
| 8 | 5 7 | sylib | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ran 𝐹 ≠ ∅ ) |
| 9 | simpr3 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐴 ∈ Fin ) | |
| 10 | 1 | ffnd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐹 Fn 𝐴 ) |
| 11 | dffn4 | ⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) | |
| 12 | 10 11 | sylib | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
| 13 | fofi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ ran 𝐹 ) → ran 𝐹 ∈ Fin ) | |
| 14 | 9 12 13 | syl2anc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ran 𝐹 ∈ Fin ) |
| 15 | 2 8 14 | 3jca | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ( ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin ) ) |
| 16 | elfir | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin ) ) → ∩ ran 𝐹 ∈ ( fi ‘ 𝐵 ) ) | |
| 17 | 15 16 | syldan | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ ran 𝐹 ∈ ( fi ‘ 𝐵 ) ) |