This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intrnfi | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> |^| ran F e. ( fi ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> F : A --> B ) |
|
| 2 | 1 | frnd | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ran F C_ B ) |
| 3 | 1 | fdmd | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> dom F = A ) |
| 4 | simpr2 | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> A =/= (/) ) |
|
| 5 | 3 4 | eqnetrd | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> dom F =/= (/) ) |
| 6 | dm0rn0 | |- ( dom F = (/) <-> ran F = (/) ) |
|
| 7 | 6 | necon3bii | |- ( dom F =/= (/) <-> ran F =/= (/) ) |
| 8 | 5 7 | sylib | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ran F =/= (/) ) |
| 9 | simpr3 | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> A e. Fin ) |
|
| 10 | 1 | ffnd | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> F Fn A ) |
| 11 | dffn4 | |- ( F Fn A <-> F : A -onto-> ran F ) |
|
| 12 | 10 11 | sylib | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> F : A -onto-> ran F ) |
| 13 | fofi | |- ( ( A e. Fin /\ F : A -onto-> ran F ) -> ran F e. Fin ) |
|
| 14 | 9 12 13 | syl2anc | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ran F e. Fin ) |
| 15 | 2 8 14 | 3jca | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ( ran F C_ B /\ ran F =/= (/) /\ ran F e. Fin ) ) |
| 16 | elfir | |- ( ( B e. V /\ ( ran F C_ B /\ ran F =/= (/) /\ ran F e. Fin ) ) -> |^| ran F e. ( fi ` B ) ) |
|
| 17 | 15 16 | syldan | |- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> |^| ran F e. ( fi ` B ) ) |