This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcodir | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( ◡ 𝑅 ∘ 𝑅 ) 𝐵 ↔ ∃ 𝑧 ( 𝐴 𝑅 𝑧 ∧ 𝐵 𝑅 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcog | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( ◡ 𝑅 ∘ 𝑅 ) 𝐵 ↔ ∃ 𝑧 ( 𝐴 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝐵 ) ) ) | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | brcnvg | ⊢ ( ( 𝑧 ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( 𝑧 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝑧 ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝑧 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝑧 ) ) |
| 5 | 4 | anbi2d | ⊢ ( 𝐵 ∈ 𝑊 → ( ( 𝐴 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝐵 ) ↔ ( 𝐴 𝑅 𝑧 ∧ 𝐵 𝑅 𝑧 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝐵 ) ↔ ( 𝐴 𝑅 𝑧 ∧ 𝐵 𝑅 𝑧 ) ) ) |
| 7 | 6 | exbidv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑧 ( 𝐴 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝐵 ) ↔ ∃ 𝑧 ( 𝐴 𝑅 𝑧 ∧ 𝐵 𝑅 𝑧 ) ) ) |
| 8 | 1 7 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( ◡ 𝑅 ∘ 𝑅 ) 𝐵 ↔ ∃ 𝑧 ( 𝐴 𝑅 𝑧 ∧ 𝐵 𝑅 𝑧 ) ) ) |