This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in Schechter p. 51. (Contributed by NM, 9-Sep-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intirr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | ||
| 2 | 1 | eqeq1i | |
| 3 | disj2 | ||
| 4 | reli | ||
| 5 | ssrel | ||
| 6 | 4 5 | ax-mp | |
| 7 | 2 3 6 | 3bitri | |
| 8 | equcom | ||
| 9 | vex | ||
| 10 | 9 | ideq | |
| 11 | df-br | ||
| 12 | 8 10 11 | 3bitr2i | |
| 13 | opex | ||
| 14 | 13 | biantrur | |
| 15 | eldif | ||
| 16 | 14 15 | bitr4i | |
| 17 | df-br | ||
| 18 | 16 17 | xchnxbir | |
| 19 | 12 18 | imbi12i | |
| 20 | 19 | 2albii | |
| 21 | breq2 | ||
| 22 | 21 | notbid | |
| 23 | 22 | equsalvw | |
| 24 | 23 | albii | |
| 25 | 7 20 24 | 3bitr2i |