This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Initial objects are essentially unique, if A is an initial object, then so is every object that is isomorphic to A. Proposition 7.3 (2) in Adamek p. 102. (Contributed by AV, 10-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initoeu1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| initoeu1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) | ||
| initoeu2.i | ⊢ ( 𝜑 → 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) | ||
| Assertion | initoeu2 | ⊢ ( 𝜑 → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoeu1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | initoeu1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) | |
| 3 | initoeu2.i | ⊢ ( 𝜑 → 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) | |
| 4 | ciclcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) | |
| 5 | 1 4 | sylan | ⊢ ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
| 6 | cicrcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) | |
| 7 | 1 6 | sylan | ⊢ ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
| 8 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 9 | cicsym | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐵 ( ≃𝑐 ‘ 𝐶 ) 𝐴 ) | |
| 10 | 8 9 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐵 ( ≃𝑐 ‘ 𝐶 ) 𝐴 ) |
| 11 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 13 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) | |
| 14 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) | |
| 15 | 11 12 8 13 14 | cic | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐵 ( ≃𝑐 ‘ 𝐶 ) 𝐴 ↔ ∃ 𝑘 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ) |
| 16 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 17 | 12 16 1 | isinitoi | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) |
| 18 | 2 17 | mpdan | ⊢ ( 𝜑 → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) |
| 19 | oveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) | |
| 20 | 19 | eleq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
| 21 | 20 | eubidv | ⊢ ( 𝑎 = 𝑏 → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
| 22 | 21 | rspcva | ⊢ ( ( 𝑏 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
| 23 | nfv | ⊢ Ⅎ ℎ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) | |
| 24 | nfv | ⊢ Ⅎ 𝑓 ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) | |
| 25 | eleq1w | ⊢ ( 𝑓 = ℎ → ( 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ↔ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) | |
| 26 | 23 24 25 | cbveuw | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ↔ ∃! ℎ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
| 27 | euex | ⊢ ( ∃! ℎ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃ ℎ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) | |
| 28 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 29 | simpr | ⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) | |
| 30 | 29 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
| 31 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) | |
| 32 | 12 16 11 28 30 31 | isohom | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ⊆ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
| 33 | 32 | sselda | ⊢ ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) → 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
| 34 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 35 | 28 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → 𝐶 ∈ Cat ) |
| 36 | 30 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
| 37 | 31 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
| 38 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) ) | |
| 39 | 38 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) ) |
| 40 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) | |
| 41 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) | |
| 42 | 12 16 34 35 36 37 39 40 41 | catcocl | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
| 43 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → 𝜑 ) | |
| 44 | df-3an | ⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ↔ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) | |
| 45 | 44 | biimpri | ⊢ ( ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) |
| 46 | 45 | ad4antlr | ⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) |
| 47 | simpr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) → 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) | |
| 48 | 47 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
| 49 | 41 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
| 50 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) | |
| 51 | 1 2 12 16 11 34 | initoeu2lem2 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
| 52 | 43 46 48 49 50 51 | syl113anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
| 53 | 42 52 | mpdan | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
| 54 | 53 | ex | ⊢ ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) → ( ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
| 55 | 33 54 | mpand | ⊢ ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
| 56 | 55 | ex | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) |
| 57 | 56 | com23 | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) |
| 58 | 57 | ex | ⊢ ( 𝜑 → ( ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
| 59 | 58 | com15 | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
| 60 | 59 | expd | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
| 61 | 60 | com24 | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
| 62 | 61 | com12 | ⊢ ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
| 63 | 62 | exlimiv | ⊢ ( ∃ ℎ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
| 64 | 27 63 | syl | ⊢ ( ∃! ℎ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
| 65 | 26 64 | sylbi | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
| 66 | 65 | pm2.43i | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
| 67 | 66 | com12 | ⊢ ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
| 68 | 67 | adantr | ⊢ ( ( 𝑏 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
| 69 | 22 68 | mpd | ⊢ ( ( 𝑏 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) |
| 70 | 69 | ex | ⊢ ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
| 71 | 70 | com15 | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
| 72 | 71 | adantld | ⊢ ( 𝜑 → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
| 73 | 18 72 | mpd | ⊢ ( 𝜑 → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) |
| 74 | 73 | imp | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
| 75 | 74 | exlimdv | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑘 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
| 76 | 15 75 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐵 ( ≃𝑐 ‘ 𝐶 ) 𝐴 → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
| 77 | 76 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → ( 𝐵 ( ≃𝑐 ‘ 𝐶 ) 𝐴 → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
| 78 | 10 77 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
| 79 | 78 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
| 80 | 79 | ralrimiv | ⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
| 81 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 82 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) | |
| 83 | 12 16 81 82 | isinito | ⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐵 ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
| 84 | 80 83 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) |
| 85 | 84 | ex | ⊢ ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) ) |
| 86 | 5 7 85 | mp2and | ⊢ ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) |
| 87 | 3 86 | mpdan | ⊢ ( 𝜑 → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) |