This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Morphisms between two terminal objects are inverses. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termoeu1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| termoeu1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( TermO ‘ 𝐶 ) ) | ||
| termoeu1.b | ⊢ ( 𝜑 → 𝐵 ∈ ( TermO ‘ 𝐶 ) ) | ||
| Assertion | 2termoinv | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐹 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termoeu1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | termoeu1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( TermO ‘ 𝐶 ) ) | |
| 3 | termoeu1.b | ⊢ ( 𝜑 → 𝐵 ∈ ( TermO ‘ 𝐶 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 7 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐶 ∈ Cat ) |
| 8 | termoo | ⊢ ( 𝐶 ∈ Cat → ( 𝐴 ∈ ( TermO ‘ 𝐶 ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) | |
| 9 | 1 2 8 | sylc | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
| 11 | termoo | ⊢ ( 𝐶 ∈ Cat → ( 𝐵 ∈ ( TermO ‘ 𝐶 ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) | |
| 12 | 1 3 11 | sylc | ⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
| 14 | simp3 | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) | |
| 15 | simp2 | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) | |
| 16 | 4 5 6 7 10 13 10 14 15 | catcocl | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
| 17 | 4 5 1 | termoid | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) |
| 18 | 2 17 | mpdan | ⊢ ( 𝜑 → ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) |
| 20 | 19 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) ↔ ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) ∈ { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) ) |
| 21 | elsni | ⊢ ( ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) ∈ { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) | |
| 22 | 20 21 | biimtrdi | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐴 ) → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 23 | 16 22 | mpd | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) |
| 24 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 25 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 26 | 4 5 6 24 25 7 10 13 14 15 | issect2 | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺 ↔ ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
| 27 | 23 26 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺 ) |
| 28 | 4 5 6 7 13 10 13 15 14 | catcocl | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) ) |
| 29 | 4 5 1 | termoid | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) |
| 30 | 3 29 | mpdan | ⊢ ( 𝜑 → ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) |
| 31 | 30 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) = { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) |
| 32 | 31 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) ↔ ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) ∈ { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) ) |
| 33 | elsni | ⊢ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) ∈ { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } → ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) | |
| 34 | 32 33 | biimtrdi | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐵 ) → ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) ) |
| 35 | 28 34 | mpd | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) |
| 36 | 4 5 6 24 25 7 13 10 15 14 | issect2 | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ↔ ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) ) |
| 37 | 35 36 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ) |
| 38 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 39 | 4 38 1 9 12 25 | isinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝐺 ↔ ( 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺 ∧ 𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ) ) ) |
| 40 | 39 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ( 𝐹 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝐺 ↔ ( 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺 ∧ 𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ) ) ) |
| 41 | 27 37 40 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐹 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝐺 ) |