This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Initial objects are essentially unique (strong form), i.e. there is a unique isomorphism between two initial objects, see statement in Lang p. 58 ("... if P, P' are two universal objects [... then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 14-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initoeu1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| initoeu1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) | ||
| initoeu1.b | ⊢ ( 𝜑 → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) | ||
| Assertion | initoeu1 | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoeu1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | initoeu1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) | |
| 3 | initoeu1.b | ⊢ ( 𝜑 → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 6 | 4 5 1 | isinitoi | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
| 7 | 2 6 | mpdan | ⊢ ( 𝜑 → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
| 8 | 4 5 1 | isinitoi | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) |
| 9 | 3 8 | mpdan | ⊢ ( 𝜑 → ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) = ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) | |
| 11 | 10 | eleq2d | ⊢ ( 𝑏 = 𝐵 → ( 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ↔ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) ) |
| 12 | 11 | eubidv | ⊢ ( 𝑏 = 𝐵 → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ↔ ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) ) |
| 13 | 12 | rspcv | ⊢ ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) ) |
| 14 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 15 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 16 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) | |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) | |
| 18 | 4 5 14 15 16 17 | isohom | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ⊆ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) → ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ⊆ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) |
| 20 | euex | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) | |
| 21 | 20 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) | |
| 23 | 22 | eleq2d | ⊢ ( 𝑎 = 𝐴 → ( 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
| 24 | 23 | eubidv | ⊢ ( 𝑎 = 𝐴 → ( ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
| 25 | 24 | rspcva | ⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
| 26 | euex | ⊢ ( ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) → ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
| 28 | 27 | ex | ⊢ ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) → ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
| 29 | 28 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) → ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
| 30 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 31 | 15 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐶 ∈ Cat ) |
| 32 | 16 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
| 33 | 17 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
| 34 | 1 2 3 | 2initoinv | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝑓 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝑔 ) |
| 35 | 34 | ad4ant134 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝑓 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝑔 ) |
| 36 | 4 30 31 32 33 14 35 | inviso1 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ∧ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
| 37 | 36 | ex | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) → ( 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
| 38 | 37 | eximdv | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
| 39 | 38 | expcom | ⊢ ( 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) → ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) |
| 40 | 39 | exlimiv | ⊢ ( ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) → ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) |
| 41 | 40 | com3l | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ( ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) |
| 42 | 41 | impd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
| 43 | 21 29 42 | syl2and | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
| 44 | 43 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
| 45 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) | |
| 46 | euelss | ⊢ ( ( ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ⊆ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ∧ ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) | |
| 47 | 19 44 45 46 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
| 48 | 47 | exp42 | ⊢ ( 𝜑 → ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) |
| 49 | 48 | com24 | ⊢ ( 𝜑 → ( ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) |
| 50 | 49 | com14 | ⊢ ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) |
| 51 | 50 | expd | ⊢ ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐵 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) ) |
| 52 | 13 51 | syldc | ⊢ ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) ) |
| 53 | 52 | com15 | ⊢ ( 𝜑 → ( 𝐵 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) ) |
| 54 | 53 | impd | ⊢ ( 𝜑 → ( ( 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) ) |
| 55 | 9 54 | mpd | ⊢ ( 𝜑 → ( 𝐴 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) ) |
| 56 | 55 | impd | ⊢ ( 𝜑 → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
| 57 | 7 56 | mpd | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |