This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer uniqueness of an element to a smaller subclass. (Contributed by AV, 14-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euelss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∃! 𝑥 𝑥 ∈ 𝐵 ) → ∃! 𝑥 𝑥 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ⊤ ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) | |
| 3 | ancom | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ↔ ( ⊤ ∧ 𝑥 ∈ 𝐴 ) ) | |
| 4 | truan | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐴 ) ↔ 𝑥 ∈ 𝐴 ) | |
| 5 | 3 4 | bitri | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ↔ 𝑥 ∈ 𝐴 ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 7 | 2 6 | sylbbr | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ⊤ ) |
| 8 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐵 ⊤ ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ ⊤ ) ) | |
| 9 | ancom | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ⊤ ) ↔ ( ⊤ ∧ 𝑥 ∈ 𝐵 ) ) | |
| 10 | truan | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) | |
| 11 | 9 10 | bitri | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ⊤ ) ↔ 𝑥 ∈ 𝐵 ) |
| 12 | 11 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ ⊤ ) ↔ ∃! 𝑥 𝑥 ∈ 𝐵 ) |
| 13 | 8 12 | sylbbr | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐵 → ∃! 𝑥 ∈ 𝐵 ⊤ ) |
| 14 | reuss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 ⊤ ∧ ∃! 𝑥 ∈ 𝐵 ⊤ ) → ∃! 𝑥 ∈ 𝐴 ⊤ ) | |
| 15 | 1 7 13 14 | syl3an | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∃! 𝑥 𝑥 ∈ 𝐵 ) → ∃! 𝑥 ∈ 𝐴 ⊤ ) |
| 16 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 ⊤ ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∃! 𝑥 𝑥 ∈ 𝐵 ) → ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) |
| 18 | ancom | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) | |
| 19 | 4 18 | bitr3i | ⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) |
| 20 | 19 | eubii | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) |
| 21 | 17 20 | sylibr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∃! 𝑥 𝑥 ∈ 𝐵 ) → ∃! 𝑥 𝑥 ∈ 𝐴 ) |