This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infxpenc2.1 | |- ( ph -> A e. On ) |
|
| infxpenc2.2 | |- ( ph -> A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
||
| infxpenc2.3 | |- W = ( `' ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` ran ( n ` b ) ) |
||
| infxpenc2.4 | |- ( ph -> F : ( _om ^o 2o ) -1-1-onto-> _om ) |
||
| infxpenc2.5 | |- ( ph -> ( F ` (/) ) = (/) ) |
||
| infxpenc2.k | |- K = ( y e. { x e. ( ( _om ^o 2o ) ^m W ) | x finSupp (/) } |-> ( F o. ( y o. `' ( _I |` W ) ) ) ) |
||
| infxpenc2.h | |- H = ( ( ( _om CNF W ) o. K ) o. `' ( ( _om ^o 2o ) CNF W ) ) |
||
| infxpenc2.l | |- L = ( y e. { x e. ( _om ^m ( W .o 2o ) ) | x finSupp (/) } |-> ( ( _I |` _om ) o. ( y o. `' ( Y o. `' X ) ) ) ) |
||
| infxpenc2.x | |- X = ( z e. 2o , w e. W |-> ( ( W .o z ) +o w ) ) |
||
| infxpenc2.y | |- Y = ( z e. 2o , w e. W |-> ( ( 2o .o w ) +o z ) ) |
||
| infxpenc2.j | |- J = ( ( ( _om CNF ( 2o .o W ) ) o. L ) o. `' ( _om CNF ( W .o 2o ) ) ) |
||
| infxpenc2.z | |- Z = ( x e. ( _om ^o W ) , y e. ( _om ^o W ) |-> ( ( ( _om ^o W ) .o x ) +o y ) ) |
||
| infxpenc2.t | |- T = ( x e. b , y e. b |-> <. ( ( n ` b ) ` x ) , ( ( n ` b ) ` y ) >. ) |
||
| infxpenc2.g | |- G = ( `' ( n ` b ) o. ( ( ( H o. J ) o. Z ) o. T ) ) |
||
| Assertion | infxpenc2lem2 | |- ( ph -> E. g A. b e. A ( _om C_ b -> ( g ` b ) : ( b X. b ) -1-1-onto-> b ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpenc2.1 | |- ( ph -> A e. On ) |
|
| 2 | infxpenc2.2 | |- ( ph -> A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
|
| 3 | infxpenc2.3 | |- W = ( `' ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` ran ( n ` b ) ) |
|
| 4 | infxpenc2.4 | |- ( ph -> F : ( _om ^o 2o ) -1-1-onto-> _om ) |
|
| 5 | infxpenc2.5 | |- ( ph -> ( F ` (/) ) = (/) ) |
|
| 6 | infxpenc2.k | |- K = ( y e. { x e. ( ( _om ^o 2o ) ^m W ) | x finSupp (/) } |-> ( F o. ( y o. `' ( _I |` W ) ) ) ) |
|
| 7 | infxpenc2.h | |- H = ( ( ( _om CNF W ) o. K ) o. `' ( ( _om ^o 2o ) CNF W ) ) |
|
| 8 | infxpenc2.l | |- L = ( y e. { x e. ( _om ^m ( W .o 2o ) ) | x finSupp (/) } |-> ( ( _I |` _om ) o. ( y o. `' ( Y o. `' X ) ) ) ) |
|
| 9 | infxpenc2.x | |- X = ( z e. 2o , w e. W |-> ( ( W .o z ) +o w ) ) |
|
| 10 | infxpenc2.y | |- Y = ( z e. 2o , w e. W |-> ( ( 2o .o w ) +o z ) ) |
|
| 11 | infxpenc2.j | |- J = ( ( ( _om CNF ( 2o .o W ) ) o. L ) o. `' ( _om CNF ( W .o 2o ) ) ) |
|
| 12 | infxpenc2.z | |- Z = ( x e. ( _om ^o W ) , y e. ( _om ^o W ) |-> ( ( ( _om ^o W ) .o x ) +o y ) ) |
|
| 13 | infxpenc2.t | |- T = ( x e. b , y e. b |-> <. ( ( n ` b ) ` x ) , ( ( n ` b ) ` y ) >. ) |
|
| 14 | infxpenc2.g | |- G = ( `' ( n ` b ) o. ( ( ( H o. J ) o. Z ) o. T ) ) |
|
| 15 | 1 | mptexd | |- ( ph -> ( b e. A |-> G ) e. _V ) |
| 16 | 1 | adantr | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> A e. On ) |
| 17 | simprl | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> b e. A ) |
|
| 18 | onelon | |- ( ( A e. On /\ b e. A ) -> b e. On ) |
|
| 19 | 16 17 18 | syl2anc | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> b e. On ) |
| 20 | simprr | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> _om C_ b ) |
|
| 21 | 1 2 3 | infxpenc2lem1 | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> ( W e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o W ) ) ) |
| 22 | 21 | simpld | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> W e. ( On \ 1o ) ) |
| 23 | 4 | adantr | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> F : ( _om ^o 2o ) -1-1-onto-> _om ) |
| 24 | 5 | adantr | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> ( F ` (/) ) = (/) ) |
| 25 | 21 | simprd | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> ( n ` b ) : b -1-1-onto-> ( _om ^o W ) ) |
| 26 | 19 20 22 23 24 25 6 7 8 9 10 11 12 13 14 | infxpenc | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> G : ( b X. b ) -1-1-onto-> b ) |
| 27 | f1of | |- ( G : ( b X. b ) -1-1-onto-> b -> G : ( b X. b ) --> b ) |
|
| 28 | 26 27 | syl | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> G : ( b X. b ) --> b ) |
| 29 | vex | |- b e. _V |
|
| 30 | 29 29 | xpex | |- ( b X. b ) e. _V |
| 31 | fex | |- ( ( G : ( b X. b ) --> b /\ ( b X. b ) e. _V ) -> G e. _V ) |
|
| 32 | 28 30 31 | sylancl | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> G e. _V ) |
| 33 | eqid | |- ( b e. A |-> G ) = ( b e. A |-> G ) |
|
| 34 | 33 | fvmpt2 | |- ( ( b e. A /\ G e. _V ) -> ( ( b e. A |-> G ) ` b ) = G ) |
| 35 | 17 32 34 | syl2anc | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> ( ( b e. A |-> G ) ` b ) = G ) |
| 36 | 35 | f1oeq1d | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> ( ( ( b e. A |-> G ) ` b ) : ( b X. b ) -1-1-onto-> b <-> G : ( b X. b ) -1-1-onto-> b ) ) |
| 37 | 26 36 | mpbird | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> ( ( b e. A |-> G ) ` b ) : ( b X. b ) -1-1-onto-> b ) |
| 38 | 37 | expr | |- ( ( ph /\ b e. A ) -> ( _om C_ b -> ( ( b e. A |-> G ) ` b ) : ( b X. b ) -1-1-onto-> b ) ) |
| 39 | 38 | ralrimiva | |- ( ph -> A. b e. A ( _om C_ b -> ( ( b e. A |-> G ) ` b ) : ( b X. b ) -1-1-onto-> b ) ) |
| 40 | nfmpt1 | |- F/_ b ( b e. A |-> G ) |
|
| 41 | 40 | nfeq2 | |- F/ b g = ( b e. A |-> G ) |
| 42 | fveq1 | |- ( g = ( b e. A |-> G ) -> ( g ` b ) = ( ( b e. A |-> G ) ` b ) ) |
|
| 43 | 42 | f1oeq1d | |- ( g = ( b e. A |-> G ) -> ( ( g ` b ) : ( b X. b ) -1-1-onto-> b <-> ( ( b e. A |-> G ) ` b ) : ( b X. b ) -1-1-onto-> b ) ) |
| 44 | 43 | imbi2d | |- ( g = ( b e. A |-> G ) -> ( ( _om C_ b -> ( g ` b ) : ( b X. b ) -1-1-onto-> b ) <-> ( _om C_ b -> ( ( b e. A |-> G ) ` b ) : ( b X. b ) -1-1-onto-> b ) ) ) |
| 45 | 41 44 | ralbid | |- ( g = ( b e. A |-> G ) -> ( A. b e. A ( _om C_ b -> ( g ` b ) : ( b X. b ) -1-1-onto-> b ) <-> A. b e. A ( _om C_ b -> ( ( b e. A |-> G ) ` b ) : ( b X. b ) -1-1-onto-> b ) ) ) |
| 46 | 15 39 45 | spcedv | |- ( ph -> E. g A. b e. A ( _om C_ b -> ( g ` b ) : ( b X. b ) -1-1-onto-> b ) ) |