This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two sets that are strictly dominated by the infinite set X is also dominated by X . This version of infunsdom assumes additionally that A is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013) (Revised by Mario Carneiro, 3-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infunsdom1 | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐴 ≼ 𝐵 ) | |
| 2 | domsdomtr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ ω ) → 𝐴 ≺ ω ) | |
| 3 | 1 2 | sylan | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐵 ≺ ω ) → 𝐴 ≺ ω ) |
| 4 | unfi2 | ⊢ ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( 𝐴 ∪ 𝐵 ) ≺ ω ) | |
| 5 | 3 4 | sylancom | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐵 ≺ ω ) → ( 𝐴 ∪ 𝐵 ) ≺ ω ) |
| 6 | simpllr | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐵 ≺ ω ) → ω ≼ 𝑋 ) | |
| 7 | sdomdomtr | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≺ ω ∧ ω ≼ 𝑋 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) | |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐵 ≺ ω ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 9 | omelon | ⊢ ω ∈ On | |
| 10 | onenon | ⊢ ( ω ∈ On → ω ∈ dom card ) | |
| 11 | 9 10 | ax-mp | ⊢ ω ∈ dom card |
| 12 | simpll | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → 𝑋 ∈ dom card ) | |
| 13 | sdomdom | ⊢ ( 𝐵 ≺ 𝑋 → 𝐵 ≼ 𝑋 ) | |
| 14 | 13 | ad2antll | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐵 ≼ 𝑋 ) |
| 15 | numdom | ⊢ ( ( 𝑋 ∈ dom card ∧ 𝐵 ≼ 𝑋 ) → 𝐵 ∈ dom card ) | |
| 16 | 12 14 15 | syl2anc | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐵 ∈ dom card ) |
| 17 | domtri2 | ⊢ ( ( ω ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω ) ) | |
| 18 | 11 16 17 | sylancr | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → ( ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω ) ) |
| 19 | 18 | biimpar | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ¬ 𝐵 ≺ ω ) → ω ≼ 𝐵 ) |
| 20 | uncom | ⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐵 ∪ 𝐴 ) | |
| 21 | 16 | adantr | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → 𝐵 ∈ dom card ) |
| 22 | simpr | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → ω ≼ 𝐵 ) | |
| 23 | 1 | adantr | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
| 24 | infunabs | ⊢ ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐵 ∪ 𝐴 ) ≈ 𝐵 ) | |
| 25 | 21 22 23 24 | syl3anc | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → ( 𝐵 ∪ 𝐴 ) ≈ 𝐵 ) |
| 26 | 20 25 | eqbrtrid | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐵 ) |
| 27 | simplrr | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → 𝐵 ≺ 𝑋 ) | |
| 28 | ensdomtr | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ 𝐵 ∧ 𝐵 ≺ 𝑋 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) | |
| 29 | 26 27 28 | syl2anc | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 30 | 19 29 | syldan | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ¬ 𝐵 ≺ ω ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 31 | 8 30 | pm2.61dan | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |