This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two sets that are strictly dominated by the infinite set X is also dominated by X . This version of infunsdom assumes additionally that A is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013) (Revised by Mario Carneiro, 3-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infunsdom1 | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> ( A u. B ) ~< X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> A ~<_ B ) |
|
| 2 | domsdomtr | |- ( ( A ~<_ B /\ B ~< _om ) -> A ~< _om ) |
|
| 3 | 1 2 | sylan | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ B ~< _om ) -> A ~< _om ) |
| 4 | unfi2 | |- ( ( A ~< _om /\ B ~< _om ) -> ( A u. B ) ~< _om ) |
|
| 5 | 3 4 | sylancom | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ B ~< _om ) -> ( A u. B ) ~< _om ) |
| 6 | simpllr | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ B ~< _om ) -> _om ~<_ X ) |
|
| 7 | sdomdomtr | |- ( ( ( A u. B ) ~< _om /\ _om ~<_ X ) -> ( A u. B ) ~< X ) |
|
| 8 | 5 6 7 | syl2anc | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ B ~< _om ) -> ( A u. B ) ~< X ) |
| 9 | omelon | |- _om e. On |
|
| 10 | onenon | |- ( _om e. On -> _om e. dom card ) |
|
| 11 | 9 10 | ax-mp | |- _om e. dom card |
| 12 | simpll | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> X e. dom card ) |
|
| 13 | sdomdom | |- ( B ~< X -> B ~<_ X ) |
|
| 14 | 13 | ad2antll | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> B ~<_ X ) |
| 15 | numdom | |- ( ( X e. dom card /\ B ~<_ X ) -> B e. dom card ) |
|
| 16 | 12 14 15 | syl2anc | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> B e. dom card ) |
| 17 | domtri2 | |- ( ( _om e. dom card /\ B e. dom card ) -> ( _om ~<_ B <-> -. B ~< _om ) ) |
|
| 18 | 11 16 17 | sylancr | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> ( _om ~<_ B <-> -. B ~< _om ) ) |
| 19 | 18 | biimpar | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ -. B ~< _om ) -> _om ~<_ B ) |
| 20 | uncom | |- ( A u. B ) = ( B u. A ) |
|
| 21 | 16 | adantr | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> B e. dom card ) |
| 22 | simpr | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> _om ~<_ B ) |
|
| 23 | 1 | adantr | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> A ~<_ B ) |
| 24 | infunabs | |- ( ( B e. dom card /\ _om ~<_ B /\ A ~<_ B ) -> ( B u. A ) ~~ B ) |
|
| 25 | 21 22 23 24 | syl3anc | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> ( B u. A ) ~~ B ) |
| 26 | 20 25 | eqbrtrid | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> ( A u. B ) ~~ B ) |
| 27 | simplrr | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> B ~< X ) |
|
| 28 | ensdomtr | |- ( ( ( A u. B ) ~~ B /\ B ~< X ) -> ( A u. B ) ~< X ) |
|
| 29 | 26 27 28 | syl2anc | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> ( A u. B ) ~< X ) |
| 30 | 19 29 | syldan | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ -. B ~< _om ) -> ( A u. B ) ~< X ) |
| 31 | 8 30 | pm2.61dan | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> ( A u. B ) ~< X ) |