This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infmremnf | ⊢ inf ( ℝ , ℝ* , < ) = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reltxrnmnf | ⊢ ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) | |
| 2 | xrltso | ⊢ < Or ℝ* | |
| 3 | 2 | a1i | ⊢ ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → < Or ℝ* ) |
| 4 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 5 | 4 | a1i | ⊢ ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → -∞ ∈ ℝ* ) |
| 6 | rexr | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) | |
| 7 | nltmnf | ⊢ ( 𝑦 ∈ ℝ* → ¬ 𝑦 < -∞ ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑦 ∈ ℝ → ¬ 𝑦 < -∞ ) |
| 9 | 8 | adantl | ⊢ ( ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ¬ 𝑦 < -∞ ) |
| 10 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( -∞ < 𝑥 ↔ -∞ < 𝑦 ) ) | |
| 11 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 < 𝑥 ↔ 𝑧 < 𝑦 ) ) | |
| 12 | 11 | rexbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ↔ ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) ↔ ( -∞ < 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) ) |
| 14 | 13 | rspcv | ⊢ ( 𝑦 ∈ ℝ* → ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → ( -∞ < 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) ) |
| 15 | 14 | com23 | ⊢ ( 𝑦 ∈ ℝ* → ( -∞ < 𝑦 → ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝑦 ∈ ℝ* ∧ -∞ < 𝑦 ) → ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) |
| 17 | 16 | impcom | ⊢ ( ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) ∧ ( 𝑦 ∈ ℝ* ∧ -∞ < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) |
| 18 | 3 5 9 17 | eqinfd | ⊢ ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → inf ( ℝ , ℝ* , < ) = -∞ ) |
| 19 | 1 18 | ax-mp | ⊢ inf ( ℝ , ℝ* , < ) = -∞ |