This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infmremnf | |- inf ( RR , RR* , < ) = -oo |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reltxrnmnf | |- A. x e. RR* ( -oo < x -> E. z e. RR z < x ) |
|
| 2 | xrltso | |- < Or RR* |
|
| 3 | 2 | a1i | |- ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> < Or RR* ) |
| 4 | mnfxr | |- -oo e. RR* |
|
| 5 | 4 | a1i | |- ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> -oo e. RR* ) |
| 6 | rexr | |- ( y e. RR -> y e. RR* ) |
|
| 7 | nltmnf | |- ( y e. RR* -> -. y < -oo ) |
|
| 8 | 6 7 | syl | |- ( y e. RR -> -. y < -oo ) |
| 9 | 8 | adantl | |- ( ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) /\ y e. RR ) -> -. y < -oo ) |
| 10 | breq2 | |- ( x = y -> ( -oo < x <-> -oo < y ) ) |
|
| 11 | breq2 | |- ( x = y -> ( z < x <-> z < y ) ) |
|
| 12 | 11 | rexbidv | |- ( x = y -> ( E. z e. RR z < x <-> E. z e. RR z < y ) ) |
| 13 | 10 12 | imbi12d | |- ( x = y -> ( ( -oo < x -> E. z e. RR z < x ) <-> ( -oo < y -> E. z e. RR z < y ) ) ) |
| 14 | 13 | rspcv | |- ( y e. RR* -> ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> ( -oo < y -> E. z e. RR z < y ) ) ) |
| 15 | 14 | com23 | |- ( y e. RR* -> ( -oo < y -> ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> E. z e. RR z < y ) ) ) |
| 16 | 15 | imp | |- ( ( y e. RR* /\ -oo < y ) -> ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> E. z e. RR z < y ) ) |
| 17 | 16 | impcom | |- ( ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) /\ ( y e. RR* /\ -oo < y ) ) -> E. z e. RR z < y ) |
| 18 | 3 5 9 17 | eqinfd | |- ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> inf ( RR , RR* , < ) = -oo ) |
| 19 | 1 18 | ax-mp | |- inf ( RR , RR* , < ) = -oo |