This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reltxrnmnf | ⊢ ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) | |
| 2 | reltre | ⊢ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 | |
| 3 | 2 | rspec | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |
| 4 | 3 | a1d | ⊢ ( 𝑥 ∈ ℝ → ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
| 5 | breq1 | ⊢ ( 𝑦 = 0 → ( 𝑦 < 𝑥 ↔ 0 < 𝑥 ) ) | |
| 6 | 0red | ⊢ ( 𝑥 = +∞ → 0 ∈ ℝ ) | |
| 7 | 0ltpnf | ⊢ 0 < +∞ | |
| 8 | breq2 | ⊢ ( 𝑥 = +∞ → ( 0 < 𝑥 ↔ 0 < +∞ ) ) | |
| 9 | 7 8 | mpbiri | ⊢ ( 𝑥 = +∞ → 0 < 𝑥 ) |
| 10 | 5 6 9 | rspcedvdw | ⊢ ( 𝑥 = +∞ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |
| 11 | 10 | a1d | ⊢ ( 𝑥 = +∞ → ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
| 12 | breq2 | ⊢ ( 𝑥 = -∞ → ( -∞ < 𝑥 ↔ -∞ < -∞ ) ) | |
| 13 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 14 | nltmnf | ⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) | |
| 15 | 14 | pm2.21d | ⊢ ( -∞ ∈ ℝ* → ( -∞ < -∞ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
| 16 | 13 15 | ax-mp | ⊢ ( -∞ < -∞ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |
| 17 | 12 16 | biimtrdi | ⊢ ( 𝑥 = -∞ → ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
| 18 | 4 11 17 | 3jaoi | ⊢ ( ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) → ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
| 19 | 1 18 | sylbi | ⊢ ( 𝑥 ∈ ℝ* → ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
| 20 | 19 | rgen | ⊢ ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |