This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infmrp1 | ⊢ inf ( ℝ+ , ℝ , < ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpltrp | ⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 | |
| 2 | ltso | ⊢ < Or ℝ | |
| 3 | 2 | a1i | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 → < Or ℝ ) |
| 4 | 0red | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 → 0 ∈ ℝ ) | |
| 5 | 0red | ⊢ ( 𝑧 ∈ ℝ+ → 0 ∈ ℝ ) | |
| 6 | rpre | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ ) | |
| 7 | rpge0 | ⊢ ( 𝑧 ∈ ℝ+ → 0 ≤ 𝑧 ) | |
| 8 | 5 6 7 | lensymd | ⊢ ( 𝑧 ∈ ℝ+ → ¬ 𝑧 < 0 ) |
| 9 | 8 | adantl | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ 𝑧 ∈ ℝ+ ) → ¬ 𝑧 < 0 ) |
| 10 | elrp | ⊢ ( 𝑧 ∈ ℝ+ ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) | |
| 11 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 < 𝑥 ↔ 𝑦 < 𝑧 ) ) | |
| 12 | 11 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 ↔ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) ) |
| 13 | 12 | rspcv | ⊢ ( 𝑧 ∈ ℝ+ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) ) |
| 14 | 10 13 | sylbir | ⊢ ( ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) ) |
| 15 | 14 | impcom | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) |
| 16 | 3 4 9 15 | eqinfd | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 → inf ( ℝ+ , ℝ , < ) = 0 ) |
| 17 | 1 16 | ax-mp | ⊢ inf ( ℝ+ , ℝ , < ) = 0 |