This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | ||
| inf3lem.3 | ⊢ 𝐴 ∈ V | ||
| inf3lem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | inf3lem6 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → 𝐹 : ω –1-1→ 𝒫 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 2 | inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | |
| 3 | inf3lem.3 | ⊢ 𝐴 ∈ V | |
| 4 | inf3lem.4 | ⊢ 𝐵 ∈ V | |
| 5 | vex | ⊢ 𝑢 ∈ V | |
| 6 | vex | ⊢ 𝑣 ∈ V | |
| 7 | 1 2 5 6 | inf3lem5 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑢 ∈ ω ∧ 𝑣 ∈ 𝑢 ) → ( 𝐹 ‘ 𝑣 ) ⊊ ( 𝐹 ‘ 𝑢 ) ) ) |
| 8 | dfpss2 | ⊢ ( ( 𝐹 ‘ 𝑣 ) ⊊ ( 𝐹 ‘ 𝑢 ) ↔ ( ( 𝐹 ‘ 𝑣 ) ⊆ ( 𝐹 ‘ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) | |
| 9 | 8 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑣 ) ⊊ ( 𝐹 ‘ 𝑢 ) → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 10 | 7 9 | syl6 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑢 ∈ ω ∧ 𝑣 ∈ 𝑢 ) → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
| 11 | 10 | expdimp | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ 𝑢 ∈ ω ) → ( 𝑣 ∈ 𝑢 → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
| 12 | 11 | adantrl | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( 𝑣 ∈ 𝑢 → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
| 13 | 1 2 6 5 | inf3lem5 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑣 ∈ ω ∧ 𝑢 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ 𝑣 ) ) ) |
| 14 | dfpss2 | ⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ∧ ¬ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) | |
| 15 | 14 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ 𝑣 ) → ¬ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) |
| 16 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) | |
| 17 | 15 16 | sylnib | ⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ 𝑣 ) → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 18 | 13 17 | syl6 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑣 ∈ ω ∧ 𝑢 ∈ 𝑣 ) → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
| 19 | 18 | expdimp | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ 𝑣 ∈ ω ) → ( 𝑢 ∈ 𝑣 → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
| 20 | 19 | adantrr | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( 𝑢 ∈ 𝑣 → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
| 21 | 12 20 | jaod | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( ( 𝑣 ∈ 𝑢 ∨ 𝑢 ∈ 𝑣 ) → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
| 22 | 21 | con2d | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) → ¬ ( 𝑣 ∈ 𝑢 ∨ 𝑢 ∈ 𝑣 ) ) ) |
| 23 | nnord | ⊢ ( 𝑣 ∈ ω → Ord 𝑣 ) | |
| 24 | nnord | ⊢ ( 𝑢 ∈ ω → Ord 𝑢 ) | |
| 25 | ordtri3 | ⊢ ( ( Ord 𝑣 ∧ Ord 𝑢 ) → ( 𝑣 = 𝑢 ↔ ¬ ( 𝑣 ∈ 𝑢 ∨ 𝑢 ∈ 𝑣 ) ) ) | |
| 26 | 23 24 25 | syl2an | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) → ( 𝑣 = 𝑢 ↔ ¬ ( 𝑣 ∈ 𝑢 ∨ 𝑢 ∈ 𝑣 ) ) ) |
| 27 | 26 | adantl | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( 𝑣 = 𝑢 ↔ ¬ ( 𝑣 ∈ 𝑢 ∨ 𝑢 ∈ 𝑣 ) ) ) |
| 28 | 22 27 | sylibrd | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) → 𝑣 = 𝑢 ) ) |
| 29 | 28 | ralrimivva | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ∀ 𝑣 ∈ ω ∀ 𝑢 ∈ ω ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) → 𝑣 = 𝑢 ) ) |
| 30 | frfnom | ⊢ ( rec ( 𝐺 , ∅ ) ↾ ω ) Fn ω | |
| 31 | fneq1 | ⊢ ( 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) → ( 𝐹 Fn ω ↔ ( rec ( 𝐺 , ∅ ) ↾ ω ) Fn ω ) ) | |
| 32 | 30 31 | mpbiri | ⊢ ( 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) → 𝐹 Fn ω ) |
| 33 | fvelrnb | ⊢ ( 𝐹 Fn ω → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) = 𝑢 ) ) | |
| 34 | 1 2 6 4 | inf3lemd | ⊢ ( 𝑣 ∈ ω → ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ) |
| 35 | fvex | ⊢ ( 𝐹 ‘ 𝑣 ) ∈ V | |
| 36 | 35 | elpw | ⊢ ( ( 𝐹 ‘ 𝑣 ) ∈ 𝒫 𝑥 ↔ ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ) |
| 37 | 34 36 | sylibr | ⊢ ( 𝑣 ∈ ω → ( 𝐹 ‘ 𝑣 ) ∈ 𝒫 𝑥 ) |
| 38 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑣 ) = 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ∈ 𝒫 𝑥 ↔ 𝑢 ∈ 𝒫 𝑥 ) ) | |
| 39 | 37 38 | syl5ibcom | ⊢ ( 𝑣 ∈ ω → ( ( 𝐹 ‘ 𝑣 ) = 𝑢 → 𝑢 ∈ 𝒫 𝑥 ) ) |
| 40 | 39 | rexlimiv | ⊢ ( ∃ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) = 𝑢 → 𝑢 ∈ 𝒫 𝑥 ) |
| 41 | 33 40 | biimtrdi | ⊢ ( 𝐹 Fn ω → ( 𝑢 ∈ ran 𝐹 → 𝑢 ∈ 𝒫 𝑥 ) ) |
| 42 | 41 | ssrdv | ⊢ ( 𝐹 Fn ω → ran 𝐹 ⊆ 𝒫 𝑥 ) |
| 43 | 42 | ancli | ⊢ ( 𝐹 Fn ω → ( 𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥 ) ) |
| 44 | 2 32 43 | mp2b | ⊢ ( 𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥 ) |
| 45 | df-f | ⊢ ( 𝐹 : ω ⟶ 𝒫 𝑥 ↔ ( 𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥 ) ) | |
| 46 | 44 45 | mpbir | ⊢ 𝐹 : ω ⟶ 𝒫 𝑥 |
| 47 | 29 46 | jctil | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 : ω ⟶ 𝒫 𝑥 ∧ ∀ 𝑣 ∈ ω ∀ 𝑢 ∈ ω ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) → 𝑣 = 𝑢 ) ) ) |
| 48 | dff13 | ⊢ ( 𝐹 : ω –1-1→ 𝒫 𝑥 ↔ ( 𝐹 : ω ⟶ 𝒫 𝑥 ∧ ∀ 𝑣 ∈ ω ∀ 𝑢 ∈ ω ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) → 𝑣 = 𝑢 ) ) ) | |
| 49 | 47 48 | sylibr | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → 𝐹 : ω –1-1→ 𝒫 𝑥 ) |