This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
||
| inf3lem.3 | |- A e. _V |
||
| inf3lem.4 | |- B e. _V |
||
| Assertion | inf3lem6 | |- ( ( x =/= (/) /\ x C_ U. x ) -> F : _om -1-1-> ~P x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| 2 | inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
|
| 3 | inf3lem.3 | |- A e. _V |
|
| 4 | inf3lem.4 | |- B e. _V |
|
| 5 | vex | |- u e. _V |
|
| 6 | vex | |- v e. _V |
|
| 7 | 1 2 5 6 | inf3lem5 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( ( u e. _om /\ v e. u ) -> ( F ` v ) C. ( F ` u ) ) ) |
| 8 | dfpss2 | |- ( ( F ` v ) C. ( F ` u ) <-> ( ( F ` v ) C_ ( F ` u ) /\ -. ( F ` v ) = ( F ` u ) ) ) |
|
| 9 | 8 | simprbi | |- ( ( F ` v ) C. ( F ` u ) -> -. ( F ` v ) = ( F ` u ) ) |
| 10 | 7 9 | syl6 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( ( u e. _om /\ v e. u ) -> -. ( F ` v ) = ( F ` u ) ) ) |
| 11 | 10 | expdimp | |- ( ( ( x =/= (/) /\ x C_ U. x ) /\ u e. _om ) -> ( v e. u -> -. ( F ` v ) = ( F ` u ) ) ) |
| 12 | 11 | adantrl | |- ( ( ( x =/= (/) /\ x C_ U. x ) /\ ( v e. _om /\ u e. _om ) ) -> ( v e. u -> -. ( F ` v ) = ( F ` u ) ) ) |
| 13 | 1 2 6 5 | inf3lem5 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( ( v e. _om /\ u e. v ) -> ( F ` u ) C. ( F ` v ) ) ) |
| 14 | dfpss2 | |- ( ( F ` u ) C. ( F ` v ) <-> ( ( F ` u ) C_ ( F ` v ) /\ -. ( F ` u ) = ( F ` v ) ) ) |
|
| 15 | 14 | simprbi | |- ( ( F ` u ) C. ( F ` v ) -> -. ( F ` u ) = ( F ` v ) ) |
| 16 | eqcom | |- ( ( F ` u ) = ( F ` v ) <-> ( F ` v ) = ( F ` u ) ) |
|
| 17 | 15 16 | sylnib | |- ( ( F ` u ) C. ( F ` v ) -> -. ( F ` v ) = ( F ` u ) ) |
| 18 | 13 17 | syl6 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( ( v e. _om /\ u e. v ) -> -. ( F ` v ) = ( F ` u ) ) ) |
| 19 | 18 | expdimp | |- ( ( ( x =/= (/) /\ x C_ U. x ) /\ v e. _om ) -> ( u e. v -> -. ( F ` v ) = ( F ` u ) ) ) |
| 20 | 19 | adantrr | |- ( ( ( x =/= (/) /\ x C_ U. x ) /\ ( v e. _om /\ u e. _om ) ) -> ( u e. v -> -. ( F ` v ) = ( F ` u ) ) ) |
| 21 | 12 20 | jaod | |- ( ( ( x =/= (/) /\ x C_ U. x ) /\ ( v e. _om /\ u e. _om ) ) -> ( ( v e. u \/ u e. v ) -> -. ( F ` v ) = ( F ` u ) ) ) |
| 22 | 21 | con2d | |- ( ( ( x =/= (/) /\ x C_ U. x ) /\ ( v e. _om /\ u e. _om ) ) -> ( ( F ` v ) = ( F ` u ) -> -. ( v e. u \/ u e. v ) ) ) |
| 23 | nnord | |- ( v e. _om -> Ord v ) |
|
| 24 | nnord | |- ( u e. _om -> Ord u ) |
|
| 25 | ordtri3 | |- ( ( Ord v /\ Ord u ) -> ( v = u <-> -. ( v e. u \/ u e. v ) ) ) |
|
| 26 | 23 24 25 | syl2an | |- ( ( v e. _om /\ u e. _om ) -> ( v = u <-> -. ( v e. u \/ u e. v ) ) ) |
| 27 | 26 | adantl | |- ( ( ( x =/= (/) /\ x C_ U. x ) /\ ( v e. _om /\ u e. _om ) ) -> ( v = u <-> -. ( v e. u \/ u e. v ) ) ) |
| 28 | 22 27 | sylibrd | |- ( ( ( x =/= (/) /\ x C_ U. x ) /\ ( v e. _om /\ u e. _om ) ) -> ( ( F ` v ) = ( F ` u ) -> v = u ) ) |
| 29 | 28 | ralrimivva | |- ( ( x =/= (/) /\ x C_ U. x ) -> A. v e. _om A. u e. _om ( ( F ` v ) = ( F ` u ) -> v = u ) ) |
| 30 | frfnom | |- ( rec ( G , (/) ) |` _om ) Fn _om |
|
| 31 | fneq1 | |- ( F = ( rec ( G , (/) ) |` _om ) -> ( F Fn _om <-> ( rec ( G , (/) ) |` _om ) Fn _om ) ) |
|
| 32 | 30 31 | mpbiri | |- ( F = ( rec ( G , (/) ) |` _om ) -> F Fn _om ) |
| 33 | fvelrnb | |- ( F Fn _om -> ( u e. ran F <-> E. v e. _om ( F ` v ) = u ) ) |
|
| 34 | 1 2 6 4 | inf3lemd | |- ( v e. _om -> ( F ` v ) C_ x ) |
| 35 | fvex | |- ( F ` v ) e. _V |
|
| 36 | 35 | elpw | |- ( ( F ` v ) e. ~P x <-> ( F ` v ) C_ x ) |
| 37 | 34 36 | sylibr | |- ( v e. _om -> ( F ` v ) e. ~P x ) |
| 38 | eleq1 | |- ( ( F ` v ) = u -> ( ( F ` v ) e. ~P x <-> u e. ~P x ) ) |
|
| 39 | 37 38 | syl5ibcom | |- ( v e. _om -> ( ( F ` v ) = u -> u e. ~P x ) ) |
| 40 | 39 | rexlimiv | |- ( E. v e. _om ( F ` v ) = u -> u e. ~P x ) |
| 41 | 33 40 | biimtrdi | |- ( F Fn _om -> ( u e. ran F -> u e. ~P x ) ) |
| 42 | 41 | ssrdv | |- ( F Fn _om -> ran F C_ ~P x ) |
| 43 | 42 | ancli | |- ( F Fn _om -> ( F Fn _om /\ ran F C_ ~P x ) ) |
| 44 | 2 32 43 | mp2b | |- ( F Fn _om /\ ran F C_ ~P x ) |
| 45 | df-f | |- ( F : _om --> ~P x <-> ( F Fn _om /\ ran F C_ ~P x ) ) |
|
| 46 | 44 45 | mpbir | |- F : _om --> ~P x |
| 47 | 29 46 | jctil | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( F : _om --> ~P x /\ A. v e. _om A. u e. _om ( ( F ` v ) = ( F ` u ) -> v = u ) ) ) |
| 48 | dff13 | |- ( F : _om -1-1-> ~P x <-> ( F : _om --> ~P x /\ A. v e. _om A. u e. _om ( ( F ` v ) = ( F ` u ) -> v = u ) ) ) |
|
| 49 | 47 48 | sylibr | |- ( ( x =/= (/) /\ x C_ U. x ) -> F : _om -1-1-> ~P x ) |