This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | ||
| inf3lem.3 | ⊢ 𝐴 ∈ V | ||
| inf3lem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | inf3lem5 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 2 | inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | |
| 3 | inf3lem.3 | ⊢ 𝐴 ∈ V | |
| 4 | inf3lem.4 | ⊢ 𝐵 ∈ V | |
| 5 | elnn | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐴 ∈ ω ) → 𝐵 ∈ ω ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ ω ) |
| 7 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 8 | ordsucss | ⊢ ( Ord 𝐴 → ( 𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴 ) ) |
| 11 | peano2b | ⊢ ( 𝐵 ∈ ω ↔ suc 𝐵 ∈ ω ) | |
| 12 | fveq2 | ⊢ ( 𝑣 = suc 𝐵 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ suc 𝐵 ) ) | |
| 13 | 12 | psseq2d | ⊢ ( 𝑣 = suc 𝐵 → ( ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝐵 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑣 = suc 𝐵 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑣 ) ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝐵 ) ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑣 = 𝑢 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) | |
| 16 | 15 | psseq2d | ⊢ ( 𝑣 = 𝑢 → ( ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑢 ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑣 = 𝑢 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑣 ) ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑣 = suc 𝑢 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ suc 𝑢 ) ) | |
| 19 | 18 | psseq2d | ⊢ ( 𝑣 = suc 𝑢 → ( ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝑢 ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑣 = suc 𝑢 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑣 ) ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝑢 ) ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑣 = 𝐴 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 22 | 21 | psseq2d | ⊢ ( 𝑣 = 𝐴 → ( ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝐴 ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑣 = 𝐴 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑣 ) ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 24 | 1 2 4 4 | inf3lem4 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐵 ∈ ω → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝐵 ) ) ) |
| 25 | 24 | com12 | ⊢ ( 𝐵 ∈ ω → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝐵 ) ) ) |
| 26 | 11 25 | sylbir | ⊢ ( suc 𝐵 ∈ ω → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝐵 ) ) ) |
| 27 | vex | ⊢ 𝑢 ∈ V | |
| 28 | 1 2 27 4 | inf3lem4 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝑢 ∈ ω → ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ suc 𝑢 ) ) ) |
| 29 | psstr | ⊢ ( ( ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ suc 𝑢 ) ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝑢 ) ) | |
| 30 | 29 | expcom | ⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ suc 𝑢 ) → ( ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑢 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝑢 ) ) ) |
| 31 | 28 30 | syl6com | ⊢ ( 𝑢 ∈ ω → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑢 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝑢 ) ) ) ) |
| 32 | 31 | a2d | ⊢ ( 𝑢 ∈ ω → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑢 ) ) → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝑢 ) ) ) ) |
| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝑢 ∈ ω ∧ suc 𝐵 ∈ ω ) ∧ suc 𝐵 ⊆ 𝑢 ) → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝑢 ) ) → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ suc 𝑢 ) ) ) ) |
| 34 | 14 17 20 23 26 33 | findsg | ⊢ ( ( ( 𝐴 ∈ ω ∧ suc 𝐵 ∈ ω ) ∧ suc 𝐵 ⊆ 𝐴 ) → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝐴 ) ) ) |
| 35 | 34 | ex | ⊢ ( ( 𝐴 ∈ ω ∧ suc 𝐵 ∈ ω ) → ( suc 𝐵 ⊆ 𝐴 → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 36 | 11 35 | sylan2b | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐵 ⊆ 𝐴 → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 37 | 10 36 | syld | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 ∈ 𝐴 → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 38 | 37 | impancom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 ∈ ω → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 39 | 6 38 | mpd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝐴 ) ) ) |
| 40 | 39 | com12 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ⊊ ( 𝐹 ‘ 𝐴 ) ) ) |