This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of Axiom of Infinity. There exists a nonempty set that is a subset of its union (using zfinf as a hypothesis). Abbreviated version of the Axiom of Infinity in FreydScedrov p. 283. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | inf1.1 | ⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) | |
| Assertion | inf2 | ⊢ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf1.1 | ⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) | |
| 2 | 1 | inf1 | ⊢ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 3 | df-ss | ⊢ ( 𝑥 ⊆ ∪ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥 ) ) | |
| 4 | eluni | ⊢ ( 𝑦 ∈ ∪ 𝑥 ↔ ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) | |
| 5 | 4 | imbi2i | ⊢ ( ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥 ) ↔ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 7 | 3 6 | bitri | ⊢ ( 𝑥 ⊆ ∪ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ↔ ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 10 | 2 9 | mpbir | ⊢ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) |