This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Infinity expressed with the fewest number of different variables. (New usage is discouraged.) (Contributed by NM, 14-Aug-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfinf | ⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-inf | ⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) | |
| 2 | elequ1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 3 | elequ1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 4 | 3 | anbi1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 5 | 4 | exbidv | ⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 6 | 2 5 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 7 | 6 | cbvalvw | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 10 | 1 9 | mpbi | ⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |