This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | inecmo.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| Assertion | inecmo | ⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( [ 𝐵 ] 𝑅 ∩ [ 𝐶 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝐵 𝑅 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inecmo.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| 2 | ineleq | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( [ 𝐵 ] 𝑅 ∩ [ 𝐶 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ) | |
| 3 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( [ 𝐵 ] 𝑅 ∩ [ 𝐶 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ) |
| 5 | 1 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 𝑅 𝑧 ↔ 𝐶 𝑅 𝑧 ) ) |
| 6 | 5 | rmo4 | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝐵 𝑅 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐵 𝑅 𝑧 ∧ 𝐶 𝑅 𝑧 ) → 𝑥 = 𝑦 ) ) |
| 7 | relelec | ⊢ ( Rel 𝑅 → ( 𝑧 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑧 ) ) | |
| 8 | relelec | ⊢ ( Rel 𝑅 → ( 𝑧 ∈ [ 𝐶 ] 𝑅 ↔ 𝐶 𝑅 𝑧 ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( Rel 𝑅 → ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) ↔ ( 𝐵 𝑅 𝑧 ∧ 𝐶 𝑅 𝑧 ) ) ) |
| 10 | 9 | imbi1d | ⊢ ( Rel 𝑅 → ( ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐵 𝑅 𝑧 ∧ 𝐶 𝑅 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
| 11 | 10 | 2ralbidv | ⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐵 𝑅 𝑧 ∧ 𝐶 𝑅 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
| 12 | 6 11 | bitr4id | ⊢ ( Rel 𝑅 → ( ∃* 𝑥 ∈ 𝐴 𝐵 𝑅 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ) ) |
| 13 | 12 | albidv | ⊢ ( Rel 𝑅 → ( ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝐵 𝑅 𝑧 ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑧 ∈ [ 𝐵 ] 𝑅 ∧ 𝑧 ∈ [ 𝐶 ] 𝑅 ) → 𝑥 = 𝑦 ) ) ) |
| 14 | 4 13 | bitr4id | ⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( [ 𝐵 ] 𝑅 ∩ [ 𝐶 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝐵 𝑅 𝑧 ) ) |