This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | inecmo.1 | |- ( x = y -> B = C ) |
|
| Assertion | inecmo | |- ( Rel R -> ( A. x e. A A. y e. A ( x = y \/ ( [ B ] R i^i [ C ] R ) = (/) ) <-> A. z E* x e. A B R z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inecmo.1 | |- ( x = y -> B = C ) |
|
| 2 | ineleq | |- ( A. x e. A A. y e. A ( x = y \/ ( [ B ] R i^i [ C ] R ) = (/) ) <-> A. x e. A A. z A. y e. A ( ( z e. [ B ] R /\ z e. [ C ] R ) -> x = y ) ) |
|
| 3 | ralcom4 | |- ( A. x e. A A. z A. y e. A ( ( z e. [ B ] R /\ z e. [ C ] R ) -> x = y ) <-> A. z A. x e. A A. y e. A ( ( z e. [ B ] R /\ z e. [ C ] R ) -> x = y ) ) |
|
| 4 | 2 3 | bitri | |- ( A. x e. A A. y e. A ( x = y \/ ( [ B ] R i^i [ C ] R ) = (/) ) <-> A. z A. x e. A A. y e. A ( ( z e. [ B ] R /\ z e. [ C ] R ) -> x = y ) ) |
| 5 | 1 | breq1d | |- ( x = y -> ( B R z <-> C R z ) ) |
| 6 | 5 | rmo4 | |- ( E* x e. A B R z <-> A. x e. A A. y e. A ( ( B R z /\ C R z ) -> x = y ) ) |
| 7 | relelec | |- ( Rel R -> ( z e. [ B ] R <-> B R z ) ) |
|
| 8 | relelec | |- ( Rel R -> ( z e. [ C ] R <-> C R z ) ) |
|
| 9 | 7 8 | anbi12d | |- ( Rel R -> ( ( z e. [ B ] R /\ z e. [ C ] R ) <-> ( B R z /\ C R z ) ) ) |
| 10 | 9 | imbi1d | |- ( Rel R -> ( ( ( z e. [ B ] R /\ z e. [ C ] R ) -> x = y ) <-> ( ( B R z /\ C R z ) -> x = y ) ) ) |
| 11 | 10 | 2ralbidv | |- ( Rel R -> ( A. x e. A A. y e. A ( ( z e. [ B ] R /\ z e. [ C ] R ) -> x = y ) <-> A. x e. A A. y e. A ( ( B R z /\ C R z ) -> x = y ) ) ) |
| 12 | 6 11 | bitr4id | |- ( Rel R -> ( E* x e. A B R z <-> A. x e. A A. y e. A ( ( z e. [ B ] R /\ z e. [ C ] R ) -> x = y ) ) ) |
| 13 | 12 | albidv | |- ( Rel R -> ( A. z E* x e. A B R z <-> A. z A. x e. A A. y e. A ( ( z e. [ B ] R /\ z e. [ C ] R ) -> x = y ) ) ) |
| 14 | 4 13 | bitr4id | |- ( Rel R -> ( A. x e. A A. y e. A ( x = y \/ ( [ B ] R i^i [ C ] R ) = (/) ) <-> A. z E* x e. A B R z ) ) |