This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of restricted universal quantifications. (Contributed by Peter Mazsa, 29-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ineleq | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom | ⊢ ( ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ( 𝐶 ∩ 𝐷 ) = ∅ ∨ 𝑥 = 𝑦 ) ) | |
| 2 | df-or | ⊢ ( ( ( 𝐶 ∩ 𝐷 ) = ∅ ∨ 𝑥 = 𝑦 ) ↔ ( ¬ ( 𝐶 ∩ 𝐷 ) = ∅ → 𝑥 = 𝑦 ) ) | |
| 3 | neq0 | ⊢ ( ¬ ( 𝐶 ∩ 𝐷 ) = ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐶 ∩ 𝐷 ) ) | |
| 4 | elin | ⊢ ( 𝑧 ∈ ( 𝐶 ∩ 𝐷 ) ↔ ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) ) | |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑧 𝑧 ∈ ( 𝐶 ∩ 𝐷 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) ) |
| 6 | 3 5 | bitri | ⊢ ( ¬ ( 𝐶 ∩ 𝐷 ) = ∅ ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) ) |
| 7 | 6 | imbi1i | ⊢ ( ( ¬ ( 𝐶 ∩ 𝐷 ) = ∅ → 𝑥 = 𝑦 ) ↔ ( ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ) |
| 8 | 19.23v | ⊢ ( ∀ 𝑧 ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ↔ ( ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ( ¬ ( 𝐶 ∩ 𝐷 ) = ∅ → 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ) |
| 10 | 1 2 9 | 3bitri | ⊢ ( ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑧 ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ) |
| 11 | 10 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ) |
| 12 | ralcom4 | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ) |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → 𝑥 = 𝑦 ) ) |