This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018) (Revised by Peter Mazsa, 2-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inecmo2 | ⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑢 = 𝑣 → 𝑢 = 𝑣 ) | |
| 2 | 1 | inecmo | ⊢ ( Rel 𝑅 → ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ) ) |
| 3 | 2 | pm5.32ri | ⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) ) |