This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closed sets of an indiscrete topology. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indiscld | ⊢ ( Clsd ‘ { ∅ , 𝐴 } ) = { ∅ , 𝐴 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indistop | ⊢ { ∅ , 𝐴 } ∈ Top | |
| 2 | indisuni | ⊢ ( I ‘ 𝐴 ) = ∪ { ∅ , 𝐴 } | |
| 3 | 2 | iscld | ⊢ ( { ∅ , 𝐴 } ∈ Top → ( 𝑥 ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ↔ ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) ) ) |
| 4 | 1 3 | ax-mp | ⊢ ( 𝑥 ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ↔ ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) ) |
| 5 | simpl | ⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → 𝑥 ⊆ ( I ‘ 𝐴 ) ) | |
| 6 | dfss4 | ⊢ ( 𝑥 ⊆ ( I ‘ 𝐴 ) ↔ ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = 𝑥 ) | |
| 7 | 5 6 | sylib | ⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = 𝑥 ) |
| 8 | simpr | ⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) | |
| 9 | indislem | ⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } | |
| 10 | 8 9 | eleqtrrdi | ⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , ( I ‘ 𝐴 ) } ) |
| 11 | elpri | ⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , ( I ‘ 𝐴 ) } → ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ ∨ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) ) ) | |
| 12 | difeq2 | ⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ( ( I ‘ 𝐴 ) ∖ ∅ ) ) | |
| 13 | dif0 | ⊢ ( ( I ‘ 𝐴 ) ∖ ∅ ) = ( I ‘ 𝐴 ) | |
| 14 | 12 13 | eqtrdi | ⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ( I ‘ 𝐴 ) ) |
| 15 | fvex | ⊢ ( I ‘ 𝐴 ) ∈ V | |
| 16 | 15 | prid2 | ⊢ ( I ‘ 𝐴 ) ∈ { ∅ , ( I ‘ 𝐴 ) } |
| 17 | 16 9 | eleqtri | ⊢ ( I ‘ 𝐴 ) ∈ { ∅ , 𝐴 } |
| 18 | 14 17 | eqeltrdi | ⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } ) |
| 19 | difeq2 | ⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ( ( I ‘ 𝐴 ) ∖ ( I ‘ 𝐴 ) ) ) | |
| 20 | difid | ⊢ ( ( I ‘ 𝐴 ) ∖ ( I ‘ 𝐴 ) ) = ∅ | |
| 21 | 19 20 | eqtrdi | ⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) = ∅ ) |
| 22 | 0ex | ⊢ ∅ ∈ V | |
| 23 | 22 | prid1 | ⊢ ∅ ∈ { ∅ , 𝐴 } |
| 24 | 21 23 | eqeltrdi | ⊢ ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } ) |
| 25 | 18 24 | jaoi | ⊢ ( ( ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ∅ ∨ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) = ( I ‘ 𝐴 ) ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } ) |
| 26 | 10 11 25 | 3syl | ⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → ( ( I ‘ 𝐴 ) ∖ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ) ∈ { ∅ , 𝐴 } ) |
| 27 | 7 26 | eqeltrrd | ⊢ ( ( 𝑥 ⊆ ( I ‘ 𝐴 ) ∧ ( ( I ‘ 𝐴 ) ∖ 𝑥 ) ∈ { ∅ , 𝐴 } ) → 𝑥 ∈ { ∅ , 𝐴 } ) |
| 28 | 4 27 | sylbi | ⊢ ( 𝑥 ∈ ( Clsd ‘ { ∅ , 𝐴 } ) → 𝑥 ∈ { ∅ , 𝐴 } ) |
| 29 | 28 | ssriv | ⊢ ( Clsd ‘ { ∅ , 𝐴 } ) ⊆ { ∅ , 𝐴 } |
| 30 | 0cld | ⊢ ( { ∅ , 𝐴 } ∈ Top → ∅ ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ) | |
| 31 | 1 30 | ax-mp | ⊢ ∅ ∈ ( Clsd ‘ { ∅ , 𝐴 } ) |
| 32 | 2 | topcld | ⊢ ( { ∅ , 𝐴 } ∈ Top → ( I ‘ 𝐴 ) ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ) |
| 33 | 1 32 | ax-mp | ⊢ ( I ‘ 𝐴 ) ∈ ( Clsd ‘ { ∅ , 𝐴 } ) |
| 34 | prssi | ⊢ ( ( ∅ ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ∧ ( I ‘ 𝐴 ) ∈ ( Clsd ‘ { ∅ , 𝐴 } ) ) → { ∅ , ( I ‘ 𝐴 ) } ⊆ ( Clsd ‘ { ∅ , 𝐴 } ) ) | |
| 35 | 31 33 34 | mp2an | ⊢ { ∅ , ( I ‘ 𝐴 ) } ⊆ ( Clsd ‘ { ∅ , 𝐴 } ) |
| 36 | 9 35 | eqsstrri | ⊢ { ∅ , 𝐴 } ⊆ ( Clsd ‘ { ∅ , 𝐴 } ) |
| 37 | 29 36 | eqssi | ⊢ ( Clsd ‘ { ∅ , 𝐴 } ) = { ∅ , 𝐴 } |