This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closed sets of an indiscrete topology. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indiscld | |- ( Clsd ` { (/) , A } ) = { (/) , A } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indistop | |- { (/) , A } e. Top |
|
| 2 | indisuni | |- ( _I ` A ) = U. { (/) , A } |
|
| 3 | 2 | iscld | |- ( { (/) , A } e. Top -> ( x e. ( Clsd ` { (/) , A } ) <-> ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) ) ) |
| 4 | 1 3 | ax-mp | |- ( x e. ( Clsd ` { (/) , A } ) <-> ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) ) |
| 5 | simpl | |- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> x C_ ( _I ` A ) ) |
|
| 6 | dfss4 | |- ( x C_ ( _I ` A ) <-> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = x ) |
|
| 7 | 5 6 | sylib | |- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = x ) |
| 8 | simpr | |- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> ( ( _I ` A ) \ x ) e. { (/) , A } ) |
|
| 9 | indislem | |- { (/) , ( _I ` A ) } = { (/) , A } |
|
| 10 | 8 9 | eleqtrrdi | |- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> ( ( _I ` A ) \ x ) e. { (/) , ( _I ` A ) } ) |
| 11 | elpri | |- ( ( ( _I ` A ) \ x ) e. { (/) , ( _I ` A ) } -> ( ( ( _I ` A ) \ x ) = (/) \/ ( ( _I ` A ) \ x ) = ( _I ` A ) ) ) |
|
| 12 | difeq2 | |- ( ( ( _I ` A ) \ x ) = (/) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = ( ( _I ` A ) \ (/) ) ) |
|
| 13 | dif0 | |- ( ( _I ` A ) \ (/) ) = ( _I ` A ) |
|
| 14 | 12 13 | eqtrdi | |- ( ( ( _I ` A ) \ x ) = (/) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = ( _I ` A ) ) |
| 15 | fvex | |- ( _I ` A ) e. _V |
|
| 16 | 15 | prid2 | |- ( _I ` A ) e. { (/) , ( _I ` A ) } |
| 17 | 16 9 | eleqtri | |- ( _I ` A ) e. { (/) , A } |
| 18 | 14 17 | eqeltrdi | |- ( ( ( _I ` A ) \ x ) = (/) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) e. { (/) , A } ) |
| 19 | difeq2 | |- ( ( ( _I ` A ) \ x ) = ( _I ` A ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = ( ( _I ` A ) \ ( _I ` A ) ) ) |
|
| 20 | difid | |- ( ( _I ` A ) \ ( _I ` A ) ) = (/) |
|
| 21 | 19 20 | eqtrdi | |- ( ( ( _I ` A ) \ x ) = ( _I ` A ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) = (/) ) |
| 22 | 0ex | |- (/) e. _V |
|
| 23 | 22 | prid1 | |- (/) e. { (/) , A } |
| 24 | 21 23 | eqeltrdi | |- ( ( ( _I ` A ) \ x ) = ( _I ` A ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) e. { (/) , A } ) |
| 25 | 18 24 | jaoi | |- ( ( ( ( _I ` A ) \ x ) = (/) \/ ( ( _I ` A ) \ x ) = ( _I ` A ) ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) e. { (/) , A } ) |
| 26 | 10 11 25 | 3syl | |- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> ( ( _I ` A ) \ ( ( _I ` A ) \ x ) ) e. { (/) , A } ) |
| 27 | 7 26 | eqeltrrd | |- ( ( x C_ ( _I ` A ) /\ ( ( _I ` A ) \ x ) e. { (/) , A } ) -> x e. { (/) , A } ) |
| 28 | 4 27 | sylbi | |- ( x e. ( Clsd ` { (/) , A } ) -> x e. { (/) , A } ) |
| 29 | 28 | ssriv | |- ( Clsd ` { (/) , A } ) C_ { (/) , A } |
| 30 | 0cld | |- ( { (/) , A } e. Top -> (/) e. ( Clsd ` { (/) , A } ) ) |
|
| 31 | 1 30 | ax-mp | |- (/) e. ( Clsd ` { (/) , A } ) |
| 32 | 2 | topcld | |- ( { (/) , A } e. Top -> ( _I ` A ) e. ( Clsd ` { (/) , A } ) ) |
| 33 | 1 32 | ax-mp | |- ( _I ` A ) e. ( Clsd ` { (/) , A } ) |
| 34 | prssi | |- ( ( (/) e. ( Clsd ` { (/) , A } ) /\ ( _I ` A ) e. ( Clsd ` { (/) , A } ) ) -> { (/) , ( _I ` A ) } C_ ( Clsd ` { (/) , A } ) ) |
|
| 35 | 31 33 34 | mp2an | |- { (/) , ( _I ` A ) } C_ ( Clsd ` { (/) , A } ) |
| 36 | 9 35 | eqsstrri | |- { (/) , A } C_ ( Clsd ` { (/) , A } ) |
| 37 | 29 36 | eqssi | |- ( Clsd ` { (/) , A } ) = { (/) , A } |