This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If for every element of an indexing set A there exists a corresponding element of another set B , then there exists a subset of B consisting only of those elements which are indexed by A . Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indexa | ⊢ ( ( 𝐵 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexg | ⊢ ( 𝐵 ∈ 𝑀 → { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∈ V ) | |
| 2 | ssrab2 | ⊢ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 | |
| 3 | 2 | a1i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ) |
| 4 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 | |
| 5 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 | |
| 6 | sbceq2a | ⊢ ( 𝑤 = 𝑥 → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) | |
| 7 | 6 | rspcev | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) |
| 9 | 8 | anim1ci | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 10 | 9 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 11 | 10 | ancoms | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 12 | sbceq2a | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) | |
| 13 | 12 | sbcbidv | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 14 | 13 | rexbidv | ⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 15 | 14 | elrab | ⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 16 | 11 15 | sylibr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ) |
| 17 | sbceq2a | ⊢ ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) | |
| 18 | 17 | rspcev | ⊢ ( ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∧ 𝜑 ) → ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } [ 𝑣 / 𝑦 ] 𝜑 ) |
| 19 | 16 18 | sylancom | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } [ 𝑣 / 𝑦 ] 𝜑 ) |
| 20 | nfcv | ⊢ Ⅎ 𝑣 { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } | |
| 21 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 22 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
| 23 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝜑 | |
| 24 | 22 23 | nfsbcw | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 |
| 25 | 21 24 | nfrexw | ⊢ Ⅎ 𝑦 ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 |
| 26 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 27 | 25 26 | nfrabw | ⊢ Ⅎ 𝑦 { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } |
| 28 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 | |
| 29 | nfv | ⊢ Ⅎ 𝑣 𝜑 | |
| 30 | 20 27 28 29 17 | cbvrexfw | ⊢ ( ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) |
| 31 | 19 30 | sylib | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) |
| 32 | 31 | exp31 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝜑 → ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) ) ) |
| 33 | 4 5 32 | rexlimd | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) ) |
| 34 | 33 | ralimia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) |
| 35 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝜑 | |
| 36 | nfv | ⊢ Ⅎ 𝑤 𝜑 | |
| 37 | 35 36 6 | cbvrexw | ⊢ ( ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 38 | 14 37 | bitrdi | ⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 39 | 38 | elrab | ⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 40 | 39 | simprbi | ⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 41 | 40 | rgen | ⊢ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 |
| 42 | 41 | a1i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 43 | 3 34 42 | 3jca | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ∧ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 44 | sseq1 | ⊢ ( 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ( 𝑐 ⊆ 𝐵 ↔ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ) ) | |
| 45 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 46 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 | |
| 47 | 45 46 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 |
| 48 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 49 | 47 48 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } |
| 50 | 49 | nfeq2 | ⊢ Ⅎ 𝑥 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } |
| 51 | nfcv | ⊢ Ⅎ 𝑦 𝑐 | |
| 52 | 51 27 | rexeqf | ⊢ ( 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ( ∃ 𝑦 ∈ 𝑐 𝜑 ↔ ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) ) |
| 53 | 50 52 | ralbid | ⊢ ( 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) ) |
| 54 | 51 27 | raleqf | ⊢ ( 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ( ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 55 | 44 53 54 | 3anbi123d | ⊢ ( 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ( ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ∧ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 56 | 55 | spcegv | ⊢ ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∈ V → ( ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ∧ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 57 | 56 | imp | ⊢ ( ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∈ V ∧ ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ∧ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 58 | 1 43 57 | syl2an | ⊢ ( ( 𝐵 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |