This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See rexeq for a version based on fewer axioms. (Contributed by NM, 9-Oct-2003) (Revised by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 9-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| raleqf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | rexeqf | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | raleqf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | 1 2 | raleqf | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝜑 ) ) |
| 4 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 5 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐵 𝜑 ) | |
| 6 | 3 4 5 | 3bitr3g | ⊢ ( 𝐴 = 𝐵 → ( ¬ ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |
| 7 | 6 | con4bid | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |