This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping for the vector subtraction operation. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvmf.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| Assertion | nvmf | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvmf.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | simpl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑈 ∈ NrmCVec ) | |
| 4 | simprl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 5 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 6 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 7 | 1 6 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ 𝑋 ) |
| 8 | 5 7 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ 𝑋 ) |
| 9 | 8 | adantrl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ 𝑋 ) |
| 10 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 11 | 1 10 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ 𝑋 ) → ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ 𝑋 ) |
| 12 | 3 4 9 11 | syl3anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ 𝑋 ) |
| 13 | 12 | ralrimivva | ⊢ ( 𝑈 ∈ NrmCVec → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ 𝑋 ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) | |
| 15 | 14 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 16 | 13 15 | sylib | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 17 | 1 10 6 2 | nvmfval | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ) |
| 18 | 17 | feq1d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
| 19 | 16 18 | mpbird | ⊢ ( 𝑈 ∈ NrmCVec → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |