This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imsval.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| imsval.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| imsval.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| Assertion | imsval | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 = ( 𝑁 ∘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsval.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 2 | imsval.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 3 | imsval.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 4 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = ( normCV ‘ 𝑈 ) ) | |
| 5 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( −𝑣 ‘ 𝑢 ) = ( −𝑣 ‘ 𝑈 ) ) | |
| 6 | 4 5 | coeq12d | ⊢ ( 𝑢 = 𝑈 → ( ( normCV ‘ 𝑢 ) ∘ ( −𝑣 ‘ 𝑢 ) ) = ( ( normCV ‘ 𝑈 ) ∘ ( −𝑣 ‘ 𝑈 ) ) ) |
| 7 | df-ims | ⊢ IndMet = ( 𝑢 ∈ NrmCVec ↦ ( ( normCV ‘ 𝑢 ) ∘ ( −𝑣 ‘ 𝑢 ) ) ) | |
| 8 | fvex | ⊢ ( normCV ‘ 𝑈 ) ∈ V | |
| 9 | fvex | ⊢ ( −𝑣 ‘ 𝑈 ) ∈ V | |
| 10 | 8 9 | coex | ⊢ ( ( normCV ‘ 𝑈 ) ∘ ( −𝑣 ‘ 𝑈 ) ) ∈ V |
| 11 | 6 7 10 | fvmpt | ⊢ ( 𝑈 ∈ NrmCVec → ( IndMet ‘ 𝑈 ) = ( ( normCV ‘ 𝑈 ) ∘ ( −𝑣 ‘ 𝑈 ) ) ) |
| 12 | 2 1 | coeq12i | ⊢ ( 𝑁 ∘ 𝑀 ) = ( ( normCV ‘ 𝑈 ) ∘ ( −𝑣 ‘ 𝑈 ) ) |
| 13 | 11 3 12 | 3eqtr4g | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 = ( 𝑁 ∘ 𝑀 ) ) |