This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imsdfn.1 | |- X = ( BaseSet ` U ) |
|
| imsdfn.8 | |- D = ( IndMet ` U ) |
||
| Assertion | imsdf | |- ( U e. NrmCVec -> D : ( X X. X ) --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsdfn.1 | |- X = ( BaseSet ` U ) |
|
| 2 | imsdfn.8 | |- D = ( IndMet ` U ) |
|
| 3 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 4 | 1 3 | nvf | |- ( U e. NrmCVec -> ( normCV ` U ) : X --> RR ) |
| 5 | eqid | |- ( -v ` U ) = ( -v ` U ) |
|
| 6 | 1 5 | nvmf | |- ( U e. NrmCVec -> ( -v ` U ) : ( X X. X ) --> X ) |
| 7 | fco | |- ( ( ( normCV ` U ) : X --> RR /\ ( -v ` U ) : ( X X. X ) --> X ) -> ( ( normCV ` U ) o. ( -v ` U ) ) : ( X X. X ) --> RR ) |
|
| 8 | 4 6 7 | syl2anc | |- ( U e. NrmCVec -> ( ( normCV ` U ) o. ( -v ` U ) ) : ( X X. X ) --> RR ) |
| 9 | 5 3 2 | imsval | |- ( U e. NrmCVec -> D = ( ( normCV ` U ) o. ( -v ` U ) ) ) |
| 10 | 9 | feq1d | |- ( U e. NrmCVec -> ( D : ( X X. X ) --> RR <-> ( ( normCV ` U ) o. ( -v ` U ) ) : ( X X. X ) --> RR ) ) |
| 11 | 8 10 | mpbird | |- ( U e. NrmCVec -> D : ( X X. X ) --> RR ) |