This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasvscaf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasvscaf.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasvscaf.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasvscaf.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasvscaf.g | ⊢ 𝐺 = ( Scalar ‘ 𝑅 ) | ||
| imasvscaf.k | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | ||
| imasvscaf.q | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | ||
| imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘ 𝑈 ) | ||
| imasvscaf.e | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | ||
| imasvscaf.c | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) | ||
| Assertion | imasvscaf | ⊢ ( 𝜑 → ∙ : ( 𝐾 × 𝐵 ) ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvscaf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasvscaf.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasvscaf.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 4 | imasvscaf.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasvscaf.g | ⊢ 𝐺 = ( Scalar ‘ 𝑅 ) | |
| 6 | imasvscaf.k | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
| 7 | imasvscaf.q | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | |
| 8 | imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘ 𝑈 ) | |
| 9 | imasvscaf.e | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | |
| 10 | imasvscaf.c | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) | |
| 11 | 1 2 3 4 5 6 7 8 9 | imasvscafn | ⊢ ( 𝜑 → ∙ Fn ( 𝐾 × 𝐵 ) ) |
| 12 | 1 2 3 4 5 6 7 8 | imasvsca | ⊢ ( 𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 13 | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) | |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 15 | 14 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ ( 𝑝 · 𝑞 ) ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 ) |
| 16 | 10 15 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 ) |
| 17 | 16 | ralrimivw | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → ∀ 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 ) |
| 18 | 17 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) ∧ 𝑝 ∈ 𝐾 ) → ∀ 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 ) |
| 19 | 18 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ∀ 𝑝 ∈ 𝐾 ∀ 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 ) |
| 20 | eqid | ⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) | |
| 21 | 20 | fmpo | ⊢ ( ∀ 𝑝 ∈ 𝐾 ∀ 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 ↔ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ 𝐵 ) |
| 22 | 19 21 | sylib | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ 𝐵 ) |
| 23 | fssxp | ⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ 𝐵 → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × 𝐵 ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × 𝐵 ) ) |
| 25 | 14 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐵 ) |
| 26 | 25 | snssd | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → { ( 𝐹 ‘ 𝑞 ) } ⊆ 𝐵 ) |
| 27 | xpss2 | ⊢ ( { ( 𝐹 ‘ 𝑞 ) } ⊆ 𝐵 → ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ ( 𝐾 × 𝐵 ) ) | |
| 28 | xpss1 | ⊢ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ ( 𝐾 × 𝐵 ) → ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × 𝐵 ) ⊆ ( ( 𝐾 × 𝐵 ) × 𝐵 ) ) | |
| 29 | 26 27 28 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × 𝐵 ) ⊆ ( ( 𝐾 × 𝐵 ) × 𝐵 ) ) |
| 30 | 24 29 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × 𝐵 ) ) |
| 31 | 30 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × 𝐵 ) ) |
| 32 | iunss | ⊢ ( ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × 𝐵 ) ↔ ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × 𝐵 ) ) | |
| 33 | 31 32 | sylibr | ⊢ ( 𝜑 → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × 𝐵 ) ) |
| 34 | 12 33 | eqsstrd | ⊢ ( 𝜑 → ∙ ⊆ ( ( 𝐾 × 𝐵 ) × 𝐵 ) ) |
| 35 | dff2 | ⊢ ( ∙ : ( 𝐾 × 𝐵 ) ⟶ 𝐵 ↔ ( ∙ Fn ( 𝐾 × 𝐵 ) ∧ ∙ ⊆ ( ( 𝐾 × 𝐵 ) × 𝐵 ) ) ) | |
| 36 | 11 34 35 | sylanbrc | ⊢ ( 𝜑 → ∙ : ( 𝐾 × 𝐵 ) ⟶ 𝐵 ) |