This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasvscaf.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasvscaf.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasvscaf.f | |- ( ph -> F : V -onto-> B ) |
||
| imasvscaf.r | |- ( ph -> R e. Z ) |
||
| imasvscaf.g | |- G = ( Scalar ` R ) |
||
| imasvscaf.k | |- K = ( Base ` G ) |
||
| imasvscaf.q | |- .x. = ( .s ` R ) |
||
| imasvscaf.s | |- .xb = ( .s ` U ) |
||
| imasvscaf.e | |- ( ( ph /\ ( p e. K /\ a e. V /\ q e. V ) ) -> ( ( F ` a ) = ( F ` q ) -> ( F ` ( p .x. a ) ) = ( F ` ( p .x. q ) ) ) ) |
||
| imasvscaf.c | |- ( ( ph /\ ( p e. K /\ q e. V ) ) -> ( p .x. q ) e. V ) |
||
| Assertion | imasvscaf | |- ( ph -> .xb : ( K X. B ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvscaf.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasvscaf.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasvscaf.f | |- ( ph -> F : V -onto-> B ) |
|
| 4 | imasvscaf.r | |- ( ph -> R e. Z ) |
|
| 5 | imasvscaf.g | |- G = ( Scalar ` R ) |
|
| 6 | imasvscaf.k | |- K = ( Base ` G ) |
|
| 7 | imasvscaf.q | |- .x. = ( .s ` R ) |
|
| 8 | imasvscaf.s | |- .xb = ( .s ` U ) |
|
| 9 | imasvscaf.e | |- ( ( ph /\ ( p e. K /\ a e. V /\ q e. V ) ) -> ( ( F ` a ) = ( F ` q ) -> ( F ` ( p .x. a ) ) = ( F ` ( p .x. q ) ) ) ) |
|
| 10 | imasvscaf.c | |- ( ( ph /\ ( p e. K /\ q e. V ) ) -> ( p .x. q ) e. V ) |
|
| 11 | 1 2 3 4 5 6 7 8 9 | imasvscafn | |- ( ph -> .xb Fn ( K X. B ) ) |
| 12 | 1 2 3 4 5 6 7 8 | imasvsca | |- ( ph -> .xb = U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) ) |
| 13 | fof | |- ( F : V -onto-> B -> F : V --> B ) |
|
| 14 | 3 13 | syl | |- ( ph -> F : V --> B ) |
| 15 | 14 | ffvelcdmda | |- ( ( ph /\ ( p .x. q ) e. V ) -> ( F ` ( p .x. q ) ) e. B ) |
| 16 | 10 15 | syldan | |- ( ( ph /\ ( p e. K /\ q e. V ) ) -> ( F ` ( p .x. q ) ) e. B ) |
| 17 | 16 | ralrimivw | |- ( ( ph /\ ( p e. K /\ q e. V ) ) -> A. x e. { ( F ` q ) } ( F ` ( p .x. q ) ) e. B ) |
| 18 | 17 | anass1rs | |- ( ( ( ph /\ q e. V ) /\ p e. K ) -> A. x e. { ( F ` q ) } ( F ` ( p .x. q ) ) e. B ) |
| 19 | 18 | ralrimiva | |- ( ( ph /\ q e. V ) -> A. p e. K A. x e. { ( F ` q ) } ( F ` ( p .x. q ) ) e. B ) |
| 20 | eqid | |- ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) = ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) |
|
| 21 | 20 | fmpo | |- ( A. p e. K A. x e. { ( F ` q ) } ( F ` ( p .x. q ) ) e. B <-> ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) : ( K X. { ( F ` q ) } ) --> B ) |
| 22 | 19 21 | sylib | |- ( ( ph /\ q e. V ) -> ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) : ( K X. { ( F ` q ) } ) --> B ) |
| 23 | fssxp | |- ( ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) : ( K X. { ( F ` q ) } ) --> B -> ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) C_ ( ( K X. { ( F ` q ) } ) X. B ) ) |
|
| 24 | 22 23 | syl | |- ( ( ph /\ q e. V ) -> ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) C_ ( ( K X. { ( F ` q ) } ) X. B ) ) |
| 25 | 14 | ffvelcdmda | |- ( ( ph /\ q e. V ) -> ( F ` q ) e. B ) |
| 26 | 25 | snssd | |- ( ( ph /\ q e. V ) -> { ( F ` q ) } C_ B ) |
| 27 | xpss2 | |- ( { ( F ` q ) } C_ B -> ( K X. { ( F ` q ) } ) C_ ( K X. B ) ) |
|
| 28 | xpss1 | |- ( ( K X. { ( F ` q ) } ) C_ ( K X. B ) -> ( ( K X. { ( F ` q ) } ) X. B ) C_ ( ( K X. B ) X. B ) ) |
|
| 29 | 26 27 28 | 3syl | |- ( ( ph /\ q e. V ) -> ( ( K X. { ( F ` q ) } ) X. B ) C_ ( ( K X. B ) X. B ) ) |
| 30 | 24 29 | sstrd | |- ( ( ph /\ q e. V ) -> ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) C_ ( ( K X. B ) X. B ) ) |
| 31 | 30 | ralrimiva | |- ( ph -> A. q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) C_ ( ( K X. B ) X. B ) ) |
| 32 | iunss | |- ( U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) C_ ( ( K X. B ) X. B ) <-> A. q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) C_ ( ( K X. B ) X. B ) ) |
|
| 33 | 31 32 | sylibr | |- ( ph -> U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) C_ ( ( K X. B ) X. B ) ) |
| 34 | 12 33 | eqsstrd | |- ( ph -> .xb C_ ( ( K X. B ) X. B ) ) |
| 35 | dff2 | |- ( .xb : ( K X. B ) --> B <-> ( .xb Fn ( K X. B ) /\ .xb C_ ( ( K X. B ) X. B ) ) ) |
|
| 36 | 11 34 35 | sylanbrc | |- ( ph -> .xb : ( K X. B ) --> B ) |