This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasless.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasless.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasless.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasless.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasless.l | ⊢ ≤ = ( le ‘ 𝑈 ) | ||
| Assertion | imasless | ⊢ ( 𝜑 → ≤ ⊆ ( 𝐵 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasless.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasless.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasless.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 4 | imasless.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasless.l | ⊢ ≤ = ( le ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) | |
| 7 | 1 2 3 4 6 5 | imasle | ⊢ ( 𝜑 → ≤ = ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) |
| 8 | relco | ⊢ Rel ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) | |
| 9 | relssdmrn | ⊢ ( Rel ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) → ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) |
| 11 | dmco | ⊢ dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) = ( ◡ ◡ 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) | |
| 12 | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) | |
| 13 | frel | ⊢ ( 𝐹 : 𝑉 ⟶ 𝐵 → Rel 𝐹 ) | |
| 14 | 3 12 13 | 3syl | ⊢ ( 𝜑 → Rel 𝐹 ) |
| 15 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
| 16 | 14 15 | sylib | ⊢ ( 𝜑 → ◡ ◡ 𝐹 = 𝐹 ) |
| 17 | 16 | imaeq1d | ⊢ ( 𝜑 → ( ◡ ◡ 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) = ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ) |
| 18 | imassrn | ⊢ ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ⊆ ran 𝐹 | |
| 19 | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 20 | 3 19 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 21 | 18 20 | sseqtrid | ⊢ ( 𝜑 → ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ⊆ 𝐵 ) |
| 22 | 17 21 | eqsstrd | ⊢ ( 𝜑 → ( ◡ ◡ 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ⊆ 𝐵 ) |
| 23 | 11 22 | eqsstrid | ⊢ ( 𝜑 → dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ 𝐵 ) |
| 24 | rncoss | ⊢ ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ ran ( 𝐹 ∘ ( le ‘ 𝑅 ) ) | |
| 25 | rnco2 | ⊢ ran ( 𝐹 ∘ ( le ‘ 𝑅 ) ) = ( 𝐹 “ ran ( le ‘ 𝑅 ) ) | |
| 26 | imassrn | ⊢ ( 𝐹 “ ran ( le ‘ 𝑅 ) ) ⊆ ran 𝐹 | |
| 27 | 26 20 | sseqtrid | ⊢ ( 𝜑 → ( 𝐹 “ ran ( le ‘ 𝑅 ) ) ⊆ 𝐵 ) |
| 28 | 25 27 | eqsstrid | ⊢ ( 𝜑 → ran ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ⊆ 𝐵 ) |
| 29 | 24 28 | sstrid | ⊢ ( 𝜑 → ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ 𝐵 ) |
| 30 | xpss12 | ⊢ ( ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ 𝐵 ∧ ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ 𝐵 ) → ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) ⊆ ( 𝐵 × 𝐵 ) ) | |
| 31 | 23 29 30 | syl2anc | ⊢ ( 𝜑 → ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) ⊆ ( 𝐵 × 𝐵 ) ) |
| 32 | 10 31 | sstrid | ⊢ ( 𝜑 → ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ ( 𝐵 × 𝐵 ) ) |
| 33 | 7 32 | eqsstrd | ⊢ ( 𝜑 → ≤ ⊆ ( 𝐵 × 𝐵 ) ) |