This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasval.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasval.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasval.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| imasval.m | ⊢ × = ( .r ‘ 𝑅 ) | ||
| imasval.g | ⊢ 𝐺 = ( Scalar ‘ 𝑅 ) | ||
| imasval.k | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | ||
| imasval.q | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | ||
| imasval.i | ⊢ , = ( ·𝑖 ‘ 𝑅 ) | ||
| imasval.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | ||
| imasval.e | ⊢ 𝐸 = ( dist ‘ 𝑅 ) | ||
| imasval.n | ⊢ 𝑁 = ( le ‘ 𝑅 ) | ||
| imasval.a | ⊢ ( 𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) | ||
| imasval.t | ⊢ ( 𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) | ||
| imasval.s | ⊢ ( 𝜑 → ⊗ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | ||
| imasval.w | ⊢ ( 𝜑 → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) | ||
| imasval.o | ⊢ ( 𝜑 → 𝑂 = ( 𝐽 qTop 𝐹 ) ) | ||
| imasval.d | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) ) | ||
| imasval.l | ⊢ ( 𝜑 → ≤ = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) | ||
| imasval.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| Assertion | imasval | ⊢ ( 𝜑 → 𝑈 = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasval.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasval.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasval.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | imasval.m | ⊢ × = ( .r ‘ 𝑅 ) | |
| 5 | imasval.g | ⊢ 𝐺 = ( Scalar ‘ 𝑅 ) | |
| 6 | imasval.k | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
| 7 | imasval.q | ⊢ · = ( ·𝑠 ‘ 𝑅 ) | |
| 8 | imasval.i | ⊢ , = ( ·𝑖 ‘ 𝑅 ) | |
| 9 | imasval.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | |
| 10 | imasval.e | ⊢ 𝐸 = ( dist ‘ 𝑅 ) | |
| 11 | imasval.n | ⊢ 𝑁 = ( le ‘ 𝑅 ) | |
| 12 | imasval.a | ⊢ ( 𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) | |
| 13 | imasval.t | ⊢ ( 𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) | |
| 14 | imasval.s | ⊢ ( 𝜑 → ⊗ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) | |
| 15 | imasval.w | ⊢ ( 𝜑 → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) | |
| 16 | imasval.o | ⊢ ( 𝜑 → 𝑂 = ( 𝐽 qTop 𝐹 ) ) | |
| 17 | imasval.d | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) ) | |
| 18 | imasval.l | ⊢ ( 𝜑 → ≤ = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) | |
| 19 | imasval.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 20 | imasval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 21 | df-imas | ⊢ “s = ( 𝑓 ∈ V , 𝑟 ∈ V ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ( ( { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 } ) ) | |
| 22 | 21 | a1i | ⊢ ( 𝜑 → “s = ( 𝑓 ∈ V , 𝑟 ∈ V ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ( ( { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 } ) ) ) |
| 23 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) → ( Base ‘ 𝑟 ) ∈ V ) | |
| 24 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑓 = 𝐹 ) | |
| 25 | 24 | rneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran 𝑓 = ran 𝐹 ) |
| 26 | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 27 | 19 26 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran 𝐹 = 𝐵 ) |
| 29 | 25 28 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran 𝑓 = 𝐵 ) |
| 30 | 29 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( Base ‘ ndx ) , ran 𝑓 〉 = 〈 ( Base ‘ ndx ) , 𝐵 〉 ) |
| 31 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) | |
| 32 | 31 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
| 33 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑣 = ( Base ‘ 𝑟 ) ) | |
| 34 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 35 | 32 33 34 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑣 = 𝑉 ) |
| 36 | 24 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) |
| 37 | 24 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑞 ) ) |
| 38 | 36 37 | opeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 = 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ) |
| 39 | 31 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) |
| 40 | 39 3 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( +g ‘ 𝑟 ) = + ) |
| 41 | 40 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) = ( 𝑝 + 𝑞 ) ) |
| 42 | 24 41 | fveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) |
| 43 | 38 42 | opeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 = 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 ) |
| 44 | 43 | sneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } = { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |
| 45 | 35 44 | iuneq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } = ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |
| 46 | 35 45 | iuneq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |
| 47 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |
| 48 | 46 47 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } = ✚ ) |
| 49 | 48 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 = 〈 ( +g ‘ ndx ) , ✚ 〉 ) |
| 50 | 31 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
| 51 | 50 4 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( .r ‘ 𝑟 ) = × ) |
| 52 | 51 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) = ( 𝑝 × 𝑞 ) ) |
| 53 | 24 52 | fveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) ) |
| 54 | 38 53 | opeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 = 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 ) |
| 55 | 54 | sneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } = { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) |
| 56 | 35 55 | iuneq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } = ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) |
| 57 | 35 56 | iuneq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) |
| 58 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) 〉 } ) |
| 59 | 57 58 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } = ∙ ) |
| 60 | 59 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 = 〈 ( .r ‘ ndx ) , ∙ 〉 ) |
| 61 | 30 49 60 | tpeq123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ) |
| 62 | 31 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Scalar ‘ 𝑟 ) = ( Scalar ‘ 𝑅 ) ) |
| 63 | 62 5 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Scalar ‘ 𝑟 ) = 𝐺 ) |
| 64 | 63 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 = 〈 ( Scalar ‘ ndx ) , 𝐺 〉 ) |
| 65 | 63 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ ( Scalar ‘ 𝑟 ) ) = ( Base ‘ 𝐺 ) ) |
| 66 | 65 6 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ ( Scalar ‘ 𝑟 ) ) = 𝐾 ) |
| 67 | 37 | sneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ( 𝑓 ‘ 𝑞 ) } = { ( 𝐹 ‘ 𝑞 ) } ) |
| 68 | 31 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑠 ‘ 𝑟 ) = ( ·𝑠 ‘ 𝑅 ) ) |
| 69 | 68 7 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑠 ‘ 𝑟 ) = · ) |
| 70 | 69 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) = ( 𝑝 · 𝑞 ) ) |
| 71 | 24 70 | fveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 72 | 66 67 71 | mpoeq123dv | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) = ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 73 | 72 | iuneq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 74 | 35 | iuneq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) ) |
| 75 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⊗ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 76 | 73 74 75 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) = ⊗ ) |
| 77 | 76 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 ) |
| 78 | 31 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑖 ‘ 𝑟 ) = ( ·𝑖 ‘ 𝑅 ) ) |
| 79 | 78 8 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑖 ‘ 𝑟 ) = , ) |
| 80 | 79 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) = ( 𝑝 , 𝑞 ) ) |
| 81 | 38 80 | opeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 = 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 ) |
| 82 | 81 | sneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } = { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) |
| 83 | 35 82 | iuneq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } = ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) |
| 84 | 35 83 | iuneq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) |
| 85 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 , 𝑞 ) 〉 } ) |
| 86 | 84 85 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } = 𝐼 ) |
| 87 | 86 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 = 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 ) |
| 88 | 64 77 87 | tpeq123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } = { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) |
| 89 | 61 88 | uneq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ) |
| 90 | 31 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( TopOpen ‘ 𝑟 ) = ( TopOpen ‘ 𝑅 ) ) |
| 91 | 90 9 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( TopOpen ‘ 𝑟 ) = 𝐽 ) |
| 92 | 91 24 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) = ( 𝐽 qTop 𝐹 ) ) |
| 93 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑂 = ( 𝐽 qTop 𝐹 ) ) |
| 94 | 92 93 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) = 𝑂 ) |
| 95 | 94 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 = 〈 ( TopSet ‘ ndx ) , 𝑂 〉 ) |
| 96 | 31 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( le ‘ 𝑟 ) = ( le ‘ 𝑅 ) ) |
| 97 | 96 11 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( le ‘ 𝑟 ) = 𝑁 ) |
| 98 | 24 97 | coeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ∘ ( le ‘ 𝑟 ) ) = ( 𝐹 ∘ 𝑁 ) ) |
| 99 | 24 | cnveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ◡ 𝑓 = ◡ 𝐹 ) |
| 100 | 98 99 | coeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) |
| 101 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ≤ = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) |
| 102 | 100 101 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) = ≤ ) |
| 103 | 102 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 = 〈 ( le ‘ ndx ) , ≤ 〉 ) |
| 104 | 35 | sqxpeqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑣 × 𝑣 ) = ( 𝑉 × 𝑉 ) ) |
| 105 | 104 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) = ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ) |
| 106 | 24 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) ) |
| 107 | 106 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ↔ ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ) ) |
| 108 | 24 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
| 109 | 108 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ↔ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ) ) |
| 110 | 24 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 111 | 24 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 112 | 110 111 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 113 | 112 | ralbidv | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 114 | 107 109 113 | 3anbi123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 115 | 105 114 | rabeqbidv | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } = { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ) |
| 116 | 31 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( dist ‘ 𝑟 ) = ( dist ‘ 𝑅 ) ) |
| 117 | 116 10 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( dist ‘ 𝑟 ) = 𝐸 ) |
| 118 | 117 | coeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) = ( 𝐸 ∘ 𝑔 ) ) |
| 119 | 118 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 120 | 115 119 | mpteq12dv | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) = ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 121 | 120 | rneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) = ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 122 | 121 | iuneq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) = ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 123 | 122 | infeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) |
| 124 | 29 29 123 | mpoeq123dv | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) ) |
| 125 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝐷 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) ) |
| 126 | 124 125 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) = 𝐷 ) |
| 127 | 126 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 = 〈 ( dist ‘ ndx ) , 𝐷 〉 ) |
| 128 | 95 103 127 | tpeq123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 } = { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) |
| 129 | 89 128 | uneq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 } ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ) |
| 130 | 23 129 | csbied | ⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑟 = 𝑅 ) ) → ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ( ( { 〈 ( Base ‘ ndx ) , ran 𝑓 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( +g ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑓 ‘ ( 𝑝 ( .r ‘ 𝑟 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓 ‘ 𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑟 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 { 〈 〈 ( 𝑓 ‘ 𝑝 ) , ( 𝑓 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑟 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ ◡ 𝑓 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) 〉 } ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ) |
| 131 | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) | |
| 132 | 19 131 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 133 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 134 | 2 133 | eqeltrdi | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 135 | 132 134 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 136 | 20 | elexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 137 | tpex | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∈ V | |
| 138 | tpex | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ∈ V | |
| 139 | 137 138 | unex | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∈ V |
| 140 | tpex | ⊢ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∈ V | |
| 141 | 139 140 | unex | ⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ∈ V |
| 142 | 141 | a1i | ⊢ ( 𝜑 → ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ∈ V ) |
| 143 | 22 130 135 136 142 | ovmpod | ⊢ ( 𝜑 → ( 𝐹 “s 𝑅 ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ) |
| 144 | 1 143 | eqtrd | ⊢ ( 𝜑 → 𝑈 = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , ∙ 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝐺 〉 , 〈 ( ·𝑠 ‘ ndx ) , ⊗ 〉 , 〈 ( ·𝑖 ‘ ndx ) , 𝐼 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) ) |