This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasval.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasval.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasval.p | |- .+ = ( +g ` R ) |
||
| imasval.m | |- .X. = ( .r ` R ) |
||
| imasval.g | |- G = ( Scalar ` R ) |
||
| imasval.k | |- K = ( Base ` G ) |
||
| imasval.q | |- .x. = ( .s ` R ) |
||
| imasval.i | |- ., = ( .i ` R ) |
||
| imasval.j | |- J = ( TopOpen ` R ) |
||
| imasval.e | |- E = ( dist ` R ) |
||
| imasval.n | |- N = ( le ` R ) |
||
| imasval.a | |- ( ph -> .+b = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .+ q ) ) >. } ) |
||
| imasval.t | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .X. q ) ) >. } ) |
||
| imasval.s | |- ( ph -> .(x) = U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) ) |
||
| imasval.w | |- ( ph -> I = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } ) |
||
| imasval.o | |- ( ph -> O = ( J qTop F ) ) |
||
| imasval.d | |- ( ph -> D = ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) ) |
||
| imasval.l | |- ( ph -> .<_ = ( ( F o. N ) o. `' F ) ) |
||
| imasval.f | |- ( ph -> F : V -onto-> B ) |
||
| imasval.r | |- ( ph -> R e. Z ) |
||
| Assertion | imasval | |- ( ph -> U = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasval.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasval.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasval.p | |- .+ = ( +g ` R ) |
|
| 4 | imasval.m | |- .X. = ( .r ` R ) |
|
| 5 | imasval.g | |- G = ( Scalar ` R ) |
|
| 6 | imasval.k | |- K = ( Base ` G ) |
|
| 7 | imasval.q | |- .x. = ( .s ` R ) |
|
| 8 | imasval.i | |- ., = ( .i ` R ) |
|
| 9 | imasval.j | |- J = ( TopOpen ` R ) |
|
| 10 | imasval.e | |- E = ( dist ` R ) |
|
| 11 | imasval.n | |- N = ( le ` R ) |
|
| 12 | imasval.a | |- ( ph -> .+b = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .+ q ) ) >. } ) |
|
| 13 | imasval.t | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .X. q ) ) >. } ) |
|
| 14 | imasval.s | |- ( ph -> .(x) = U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) ) |
|
| 15 | imasval.w | |- ( ph -> I = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } ) |
|
| 16 | imasval.o | |- ( ph -> O = ( J qTop F ) ) |
|
| 17 | imasval.d | |- ( ph -> D = ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) ) |
|
| 18 | imasval.l | |- ( ph -> .<_ = ( ( F o. N ) o. `' F ) ) |
|
| 19 | imasval.f | |- ( ph -> F : V -onto-> B ) |
|
| 20 | imasval.r | |- ( ph -> R e. Z ) |
|
| 21 | df-imas | |- "s = ( f e. _V , r e. _V |-> [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) ) |
|
| 22 | 21 | a1i | |- ( ph -> "s = ( f e. _V , r e. _V |-> [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) ) ) |
| 23 | fvexd | |- ( ( ph /\ ( f = F /\ r = R ) ) -> ( Base ` r ) e. _V ) |
|
| 24 | simplrl | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> f = F ) |
|
| 25 | 24 | rneqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ran f = ran F ) |
| 26 | forn | |- ( F : V -onto-> B -> ran F = B ) |
|
| 27 | 19 26 | syl | |- ( ph -> ran F = B ) |
| 28 | 27 | ad2antrr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ran F = B ) |
| 29 | 25 28 | eqtrd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ran f = B ) |
| 30 | 29 | opeq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. ( Base ` ndx ) , ran f >. = <. ( Base ` ndx ) , B >. ) |
| 31 | simplrr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> r = R ) |
|
| 32 | 31 | fveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( Base ` r ) = ( Base ` R ) ) |
| 33 | simpr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> v = ( Base ` r ) ) |
|
| 34 | 2 | ad2antrr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> V = ( Base ` R ) ) |
| 35 | 32 33 34 | 3eqtr4d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> v = V ) |
| 36 | 24 | fveq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( f ` p ) = ( F ` p ) ) |
| 37 | 24 | fveq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( f ` q ) = ( F ` q ) ) |
| 38 | 36 37 | opeq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. ( f ` p ) , ( f ` q ) >. = <. ( F ` p ) , ( F ` q ) >. ) |
| 39 | 31 | fveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( +g ` r ) = ( +g ` R ) ) |
| 40 | 39 3 | eqtr4di | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( +g ` r ) = .+ ) |
| 41 | 40 | oveqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( p ( +g ` r ) q ) = ( p .+ q ) ) |
| 42 | 24 41 | fveq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( f ` ( p ( +g ` r ) q ) ) = ( F ` ( p .+ q ) ) ) |
| 43 | 38 42 | opeq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. = <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .+ q ) ) >. ) |
| 44 | 43 | sneqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } = { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .+ q ) ) >. } ) |
| 45 | 35 44 | iuneq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } = U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .+ q ) ) >. } ) |
| 46 | 35 45 | iuneq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .+ q ) ) >. } ) |
| 47 | 12 | ad2antrr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> .+b = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .+ q ) ) >. } ) |
| 48 | 46 47 | eqtr4d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } = .+b ) |
| 49 | 48 | opeq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. = <. ( +g ` ndx ) , .+b >. ) |
| 50 | 31 | fveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( .r ` r ) = ( .r ` R ) ) |
| 51 | 50 4 | eqtr4di | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( .r ` r ) = .X. ) |
| 52 | 51 | oveqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( p ( .r ` r ) q ) = ( p .X. q ) ) |
| 53 | 24 52 | fveq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( f ` ( p ( .r ` r ) q ) ) = ( F ` ( p .X. q ) ) ) |
| 54 | 38 53 | opeq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. = <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .X. q ) ) >. ) |
| 55 | 54 | sneqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } = { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .X. q ) ) >. } ) |
| 56 | 35 55 | iuneq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } = U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .X. q ) ) >. } ) |
| 57 | 35 56 | iuneq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .X. q ) ) >. } ) |
| 58 | 13 | ad2antrr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .X. q ) ) >. } ) |
| 59 | 57 58 | eqtr4d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } = .xb ) |
| 60 | 59 | opeq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. = <. ( .r ` ndx ) , .xb >. ) |
| 61 | 30 49 60 | tpeq123d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } ) |
| 62 | 31 | fveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( Scalar ` r ) = ( Scalar ` R ) ) |
| 63 | 62 5 | eqtr4di | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( Scalar ` r ) = G ) |
| 64 | 63 | opeq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. ( Scalar ` ndx ) , ( Scalar ` r ) >. = <. ( Scalar ` ndx ) , G >. ) |
| 65 | 63 | fveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( Base ` ( Scalar ` r ) ) = ( Base ` G ) ) |
| 66 | 65 6 | eqtr4di | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( Base ` ( Scalar ` r ) ) = K ) |
| 67 | 37 | sneqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> { ( f ` q ) } = { ( F ` q ) } ) |
| 68 | 31 | fveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( .s ` r ) = ( .s ` R ) ) |
| 69 | 68 7 | eqtr4di | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( .s ` r ) = .x. ) |
| 70 | 69 | oveqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( p ( .s ` r ) q ) = ( p .x. q ) ) |
| 71 | 24 70 | fveq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( f ` ( p ( .s ` r ) q ) ) = ( F ` ( p .x. q ) ) ) |
| 72 | 66 67 71 | mpoeq123dv | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) = ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) ) |
| 73 | 72 | iuneq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ q e. V ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) = U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) ) |
| 74 | 35 | iuneq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) = U_ q e. V ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) ) |
| 75 | 14 | ad2antrr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> .(x) = U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) ) |
| 76 | 73 74 75 | 3eqtr4d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) = .(x) ) |
| 77 | 76 | opeq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. = <. ( .s ` ndx ) , .(x) >. ) |
| 78 | 31 | fveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( .i ` r ) = ( .i ` R ) ) |
| 79 | 78 8 | eqtr4di | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( .i ` r ) = ., ) |
| 80 | 79 | oveqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( p ( .i ` r ) q ) = ( p ., q ) ) |
| 81 | 38 80 | opeq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. = <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. ) |
| 82 | 81 | sneqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } = { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } ) |
| 83 | 35 82 | iuneq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } = U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } ) |
| 84 | 35 83 | iuneq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } ) |
| 85 | 15 | ad2antrr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> I = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ., q ) >. } ) |
| 86 | 84 85 | eqtr4d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } = I ) |
| 87 | 86 | opeq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. = <. ( .i ` ndx ) , I >. ) |
| 88 | 64 77 87 | tpeq123d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } = { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } ) |
| 89 | 61 88 | uneq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } ) ) |
| 90 | 31 | fveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( TopOpen ` r ) = ( TopOpen ` R ) ) |
| 91 | 90 9 | eqtr4di | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( TopOpen ` r ) = J ) |
| 92 | 91 24 | oveq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( TopOpen ` r ) qTop f ) = ( J qTop F ) ) |
| 93 | 16 | ad2antrr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> O = ( J qTop F ) ) |
| 94 | 92 93 | eqtr4d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( TopOpen ` r ) qTop f ) = O ) |
| 95 | 94 | opeq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. = <. ( TopSet ` ndx ) , O >. ) |
| 96 | 31 | fveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( le ` r ) = ( le ` R ) ) |
| 97 | 96 11 | eqtr4di | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( le ` r ) = N ) |
| 98 | 24 97 | coeq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( f o. ( le ` r ) ) = ( F o. N ) ) |
| 99 | 24 | cnveqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> `' f = `' F ) |
| 100 | 98 99 | coeq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( f o. ( le ` r ) ) o. `' f ) = ( ( F o. N ) o. `' F ) ) |
| 101 | 18 | ad2antrr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> .<_ = ( ( F o. N ) o. `' F ) ) |
| 102 | 100 101 | eqtr4d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( f o. ( le ` r ) ) o. `' f ) = .<_ ) |
| 103 | 102 | opeq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. = <. ( le ` ndx ) , .<_ >. ) |
| 104 | 35 | sqxpeqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( v X. v ) = ( V X. V ) ) |
| 105 | 104 | oveq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( v X. v ) ^m ( 1 ... n ) ) = ( ( V X. V ) ^m ( 1 ... n ) ) ) |
| 106 | 24 | fveq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( f ` ( 1st ` ( h ` 1 ) ) ) = ( F ` ( 1st ` ( h ` 1 ) ) ) ) |
| 107 | 106 | eqeq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x <-> ( F ` ( 1st ` ( h ` 1 ) ) ) = x ) ) |
| 108 | 24 | fveq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( f ` ( 2nd ` ( h ` n ) ) ) = ( F ` ( 2nd ` ( h ` n ) ) ) ) |
| 109 | 108 | eqeq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( f ` ( 2nd ` ( h ` n ) ) ) = y <-> ( F ` ( 2nd ` ( h ` n ) ) ) = y ) ) |
| 110 | 24 | fveq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( f ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 2nd ` ( h ` i ) ) ) ) |
| 111 | 24 | fveq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) |
| 112 | 110 111 | eqeq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) <-> ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) ) |
| 113 | 112 | ralbidv | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) <-> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) ) |
| 114 | 107 109 113 | 3anbi123d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) ) ) |
| 115 | 105 114 | rabeqbidv | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } ) |
| 116 | 31 | fveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( dist ` r ) = ( dist ` R ) ) |
| 117 | 116 10 | eqtr4di | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( dist ` r ) = E ) |
| 118 | 117 | coeq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( dist ` r ) o. g ) = ( E o. g ) ) |
| 119 | 118 | oveq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( RR*s gsum ( ( dist ` r ) o. g ) ) = ( RR*s gsum ( E o. g ) ) ) |
| 120 | 115 119 | mpteq12dv | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) = ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 121 | 120 | rneqd | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) = ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 122 | 121 | iuneq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) = U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 123 | 122 | infeq1d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) = inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) |
| 124 | 29 29 123 | mpoeq123dv | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) = ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) ) |
| 125 | 17 | ad2antrr | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> D = ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) ) |
| 126 | 124 125 | eqtr4d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) = D ) |
| 127 | 126 | opeq2d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. = <. ( dist ` ndx ) , D >. ) |
| 128 | 95 103 127 | tpeq123d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } = { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) |
| 129 | 89 128 | uneq12d | |- ( ( ( ph /\ ( f = F /\ r = R ) ) /\ v = ( Base ` r ) ) -> ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) ) |
| 130 | 23 129 | csbied | |- ( ( ph /\ ( f = F /\ r = R ) ) -> [_ ( Base ` r ) / v ]_ ( ( { <. ( Base ` ndx ) , ran f >. , <. ( +g ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( +g ` r ) q ) ) >. } >. , <. ( .r ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( f ` ( p ( .r ` r ) q ) ) >. } >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , U_ q e. v ( p e. ( Base ` ( Scalar ` r ) ) , x e. { ( f ` q ) } |-> ( f ` ( p ( .s ` r ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. v U_ q e. v { <. <. ( f ` p ) , ( f ` q ) >. , ( p ( .i ` r ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` r ) qTop f ) >. , <. ( le ` ndx ) , ( ( f o. ( le ` r ) ) o. `' f ) >. , <. ( dist ` ndx ) , ( x e. ran f , y e. ran f |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( v X. v ) ^m ( 1 ... n ) ) | ( ( f ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( f ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( f ` ( 2nd ` ( h ` i ) ) ) = ( f ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` r ) o. g ) ) ) , RR* , < ) ) >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) ) |
| 131 | fof | |- ( F : V -onto-> B -> F : V --> B ) |
|
| 132 | 19 131 | syl | |- ( ph -> F : V --> B ) |
| 133 | fvex | |- ( Base ` R ) e. _V |
|
| 134 | 2 133 | eqeltrdi | |- ( ph -> V e. _V ) |
| 135 | 132 134 | fexd | |- ( ph -> F e. _V ) |
| 136 | 20 | elexd | |- ( ph -> R e. _V ) |
| 137 | tpex | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } e. _V |
|
| 138 | tpex | |- { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } e. _V |
|
| 139 | 137 138 | unex | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } ) e. _V |
| 140 | tpex | |- { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } e. _V |
|
| 141 | 139 140 | unex | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) e. _V |
| 142 | 141 | a1i | |- ( ph -> ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) e. _V ) |
| 143 | 22 130 135 136 142 | ovmpod | |- ( ph -> ( F "s R ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) ) |
| 144 | 1 143 | eqtrd | |- ( ph -> U = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .xb >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , .(x) >. , <. ( .i ` ndx ) , I >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } ) ) |