This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd . (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidd2.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| grpidd2.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | ||
| grpidd2.z | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) | ||
| grpidd2.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) | ||
| grpidd2.j | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| Assertion | grpidd2 | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidd2.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| 2 | grpidd2.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | |
| 3 | grpidd2.z | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) | |
| 4 | grpidd2.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) | |
| 5 | grpidd2.j | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 6 | 2 | oveqd | ⊢ ( 𝜑 → ( 0 + 0 ) = ( 0 ( +g ‘ 𝐺 ) 0 ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = 0 → ( 0 + 𝑥 ) = ( 0 + 0 ) ) | |
| 8 | id | ⊢ ( 𝑥 = 0 → 𝑥 = 0 ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 0 + 𝑥 ) = 𝑥 ↔ ( 0 + 0 ) = 0 ) ) |
| 10 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 0 + 𝑥 ) = 𝑥 ) |
| 11 | 9 10 3 | rspcdva | ⊢ ( 𝜑 → ( 0 + 0 ) = 0 ) |
| 12 | 6 11 | eqtr3d | ⊢ ( 𝜑 → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 13 | 3 1 | eleqtrd | ⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 14 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 15 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 16 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 17 | 14 15 16 | grpid | ⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ↔ ( 0g ‘ 𝐺 ) = 0 ) ) |
| 18 | 5 13 17 | syl2anc | ⊢ ( 𝜑 → ( ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ↔ ( 0g ‘ 𝐺 ) = 0 ) ) |
| 19 | 12 18 | mpbid | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = 0 ) |
| 20 | 19 | eqcomd | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) |