This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image by a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by Stefan O'Rear, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imainrect | ⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) “ 𝑌 ) = ( ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) ∩ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ↾ 𝑌 ) = ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) | |
| 2 | 1 | rneqi | ⊢ ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ↾ 𝑌 ) = ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) |
| 3 | df-ima | ⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) “ 𝑌 ) = ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ↾ 𝑌 ) | |
| 4 | df-ima | ⊢ ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) = ran ( 𝐺 ↾ ( 𝑌 ∩ 𝐴 ) ) | |
| 5 | df-res | ⊢ ( 𝐺 ↾ ( 𝑌 ∩ 𝐴 ) ) = ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) | |
| 6 | 5 | rneqi | ⊢ ran ( 𝐺 ↾ ( 𝑌 ∩ 𝐴 ) ) = ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) |
| 7 | 4 6 | eqtri | ⊢ ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) = ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) |
| 8 | 7 | ineq1i | ⊢ ( ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) ∩ 𝐵 ) = ( ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) |
| 9 | cnvin | ⊢ ◡ ( ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( V × 𝐵 ) ) = ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ◡ ( V × 𝐵 ) ) | |
| 10 | inxp | ⊢ ( ( 𝐴 × V ) ∩ ( V × 𝐵 ) ) = ( ( 𝐴 ∩ V ) × ( V ∩ 𝐵 ) ) | |
| 11 | inv1 | ⊢ ( 𝐴 ∩ V ) = 𝐴 | |
| 12 | incom | ⊢ ( V ∩ 𝐵 ) = ( 𝐵 ∩ V ) | |
| 13 | inv1 | ⊢ ( 𝐵 ∩ V ) = 𝐵 | |
| 14 | 12 13 | eqtri | ⊢ ( V ∩ 𝐵 ) = 𝐵 |
| 15 | 11 14 | xpeq12i | ⊢ ( ( 𝐴 ∩ V ) × ( V ∩ 𝐵 ) ) = ( 𝐴 × 𝐵 ) |
| 16 | 10 15 | eqtr2i | ⊢ ( 𝐴 × 𝐵 ) = ( ( 𝐴 × V ) ∩ ( V × 𝐵 ) ) |
| 17 | 16 | ineq2i | ⊢ ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × 𝐵 ) ) = ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( ( 𝐴 × V ) ∩ ( V × 𝐵 ) ) ) |
| 18 | in32 | ⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) = ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × 𝐵 ) ) | |
| 19 | xpindir | ⊢ ( ( 𝑌 ∩ 𝐴 ) × V ) = ( ( 𝑌 × V ) ∩ ( 𝐴 × V ) ) | |
| 20 | 19 | ineq2i | ⊢ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) = ( 𝐺 ∩ ( ( 𝑌 × V ) ∩ ( 𝐴 × V ) ) ) |
| 21 | inass | ⊢ ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × V ) ) = ( 𝐺 ∩ ( ( 𝑌 × V ) ∩ ( 𝐴 × V ) ) ) | |
| 22 | 20 21 | eqtr4i | ⊢ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) = ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × V ) ) |
| 23 | 22 | ineq1i | ⊢ ( ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( V × 𝐵 ) ) = ( ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × V ) ) ∩ ( V × 𝐵 ) ) |
| 24 | inass | ⊢ ( ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × V ) ) ∩ ( V × 𝐵 ) ) = ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( ( 𝐴 × V ) ∩ ( V × 𝐵 ) ) ) | |
| 25 | 23 24 | eqtri | ⊢ ( ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( V × 𝐵 ) ) = ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( ( 𝐴 × V ) ∩ ( V × 𝐵 ) ) ) |
| 26 | 17 18 25 | 3eqtr4i | ⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) = ( ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( V × 𝐵 ) ) |
| 27 | 26 | cnveqi | ⊢ ◡ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) = ◡ ( ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( V × 𝐵 ) ) |
| 28 | df-res | ⊢ ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) = ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( 𝐵 × V ) ) | |
| 29 | cnvxp | ⊢ ◡ ( V × 𝐵 ) = ( 𝐵 × V ) | |
| 30 | 29 | ineq2i | ⊢ ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ◡ ( V × 𝐵 ) ) = ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( 𝐵 × V ) ) |
| 31 | 28 30 | eqtr4i | ⊢ ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) = ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ◡ ( V × 𝐵 ) ) |
| 32 | 9 27 31 | 3eqtr4ri | ⊢ ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) = ◡ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) |
| 33 | 32 | dmeqi | ⊢ dom ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) = dom ◡ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) |
| 34 | incom | ⊢ ( 𝐵 ∩ dom ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ) = ( dom ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) | |
| 35 | dmres | ⊢ dom ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) = ( 𝐵 ∩ dom ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ) | |
| 36 | df-rn | ⊢ ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) = dom ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) | |
| 37 | 36 | ineq1i | ⊢ ( ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) = ( dom ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) |
| 38 | 34 35 37 | 3eqtr4ri | ⊢ ( ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) = dom ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) |
| 39 | df-rn | ⊢ ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) = dom ◡ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) | |
| 40 | 33 38 39 | 3eqtr4ri | ⊢ ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) = ( ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) |
| 41 | 8 40 | eqtr4i | ⊢ ( ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) ∩ 𝐵 ) = ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) |
| 42 | 2 3 41 | 3eqtr4i | ⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) “ 𝑌 ) = ( ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) ∩ 𝐵 ) |