This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image by a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by Stefan O'Rear, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imainrect | |- ( ( G i^i ( A X. B ) ) " Y ) = ( ( G " ( Y i^i A ) ) i^i B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( ( G i^i ( A X. B ) ) |` Y ) = ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
|
| 2 | 1 | rneqi | |- ran ( ( G i^i ( A X. B ) ) |` Y ) = ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
| 3 | df-ima | |- ( ( G i^i ( A X. B ) ) " Y ) = ran ( ( G i^i ( A X. B ) ) |` Y ) |
|
| 4 | df-ima | |- ( G " ( Y i^i A ) ) = ran ( G |` ( Y i^i A ) ) |
|
| 5 | df-res | |- ( G |` ( Y i^i A ) ) = ( G i^i ( ( Y i^i A ) X. _V ) ) |
|
| 6 | 5 | rneqi | |- ran ( G |` ( Y i^i A ) ) = ran ( G i^i ( ( Y i^i A ) X. _V ) ) |
| 7 | 4 6 | eqtri | |- ( G " ( Y i^i A ) ) = ran ( G i^i ( ( Y i^i A ) X. _V ) ) |
| 8 | 7 | ineq1i | |- ( ( G " ( Y i^i A ) ) i^i B ) = ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) |
| 9 | cnvin | |- `' ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i `' ( _V X. B ) ) |
|
| 10 | inxp | |- ( ( A X. _V ) i^i ( _V X. B ) ) = ( ( A i^i _V ) X. ( _V i^i B ) ) |
|
| 11 | inv1 | |- ( A i^i _V ) = A |
|
| 12 | incom | |- ( _V i^i B ) = ( B i^i _V ) |
|
| 13 | inv1 | |- ( B i^i _V ) = B |
|
| 14 | 12 13 | eqtri | |- ( _V i^i B ) = B |
| 15 | 11 14 | xpeq12i | |- ( ( A i^i _V ) X. ( _V i^i B ) ) = ( A X. B ) |
| 16 | 10 15 | eqtr2i | |- ( A X. B ) = ( ( A X. _V ) i^i ( _V X. B ) ) |
| 17 | 16 | ineq2i | |- ( ( G i^i ( Y X. _V ) ) i^i ( A X. B ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( ( A X. _V ) i^i ( _V X. B ) ) ) |
| 18 | in32 | |- ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( A X. B ) ) |
|
| 19 | xpindir | |- ( ( Y i^i A ) X. _V ) = ( ( Y X. _V ) i^i ( A X. _V ) ) |
|
| 20 | 19 | ineq2i | |- ( G i^i ( ( Y i^i A ) X. _V ) ) = ( G i^i ( ( Y X. _V ) i^i ( A X. _V ) ) ) |
| 21 | inass | |- ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) = ( G i^i ( ( Y X. _V ) i^i ( A X. _V ) ) ) |
|
| 22 | 20 21 | eqtr4i | |- ( G i^i ( ( Y i^i A ) X. _V ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) |
| 23 | 22 | ineq1i | |- ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) = ( ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) i^i ( _V X. B ) ) |
| 24 | inass | |- ( ( ( G i^i ( Y X. _V ) ) i^i ( A X. _V ) ) i^i ( _V X. B ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( ( A X. _V ) i^i ( _V X. B ) ) ) |
|
| 25 | 23 24 | eqtri | |- ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) = ( ( G i^i ( Y X. _V ) ) i^i ( ( A X. _V ) i^i ( _V X. B ) ) ) |
| 26 | 17 18 25 | 3eqtr4i | |- ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) |
| 27 | 26 | cnveqi | |- `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = `' ( ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( _V X. B ) ) |
| 28 | df-res | |- ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( B X. _V ) ) |
|
| 29 | cnvxp | |- `' ( _V X. B ) = ( B X. _V ) |
|
| 30 | 29 | ineq2i | |- ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i `' ( _V X. B ) ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i ( B X. _V ) ) |
| 31 | 28 30 | eqtr4i | |- ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i `' ( _V X. B ) ) |
| 32 | 9 27 31 | 3eqtr4ri | |- ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
| 33 | 32 | dmeqi | |- dom ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = dom `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
| 34 | incom | |- ( B i^i dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) ) = ( dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) |
|
| 35 | dmres | |- dom ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) = ( B i^i dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) ) |
|
| 36 | df-rn | |- ran ( G i^i ( ( Y i^i A ) X. _V ) ) = dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) |
|
| 37 | 36 | ineq1i | |- ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) = ( dom `' ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) |
| 38 | 34 35 37 | 3eqtr4ri | |- ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) = dom ( `' ( G i^i ( ( Y i^i A ) X. _V ) ) |` B ) |
| 39 | df-rn | |- ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = dom `' ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
|
| 40 | 33 38 39 | 3eqtr4ri | |- ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) = ( ran ( G i^i ( ( Y i^i A ) X. _V ) ) i^i B ) |
| 41 | 8 40 | eqtr4i | |- ( ( G " ( Y i^i A ) ) i^i B ) = ran ( ( G i^i ( A X. B ) ) i^i ( Y X. _V ) ) |
| 42 | 2 3 41 | 3eqtr4i | |- ( ( G i^i ( A X. B ) ) " Y ) = ( ( G " ( Y i^i A ) ) i^i B ) |